Muutke küpsiste eelistusi

E-raamat: Viscoelastic Waves in Layered Media

(United States Geological Survey, California)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-May-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511577253
  • Formaat - PDF+DRM
  • Hind: 46,92 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-May-2009
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511577253

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents innovative mathematical theory and corresponding numerical results for wave propagation in layered media with arbitrary amounts of intrinsic absorption.

This book is a rigorous, self-contained exposition of the mathematical theory for wave propagation in layered media with arbitrary amounts of intrinsic absorption. The theory, previously unpublished in book form, provides solutions for fundamental wave-propagation problems and corresponding numerical results in the context of any media with a linear response (elastic or anelastic). It provides new insights regarding the physical characteristics for two- and three-dimensional anelastic body and surface waves. The book is an excellent graduate-level textbook. It permits fundamental elastic wave propagation to be taught in the broader context of wave propagation in any media with a linear response. The book is a valuable reference text. It provides tools for solving problems in seismology, geotechnical engineering, exploration geophysics, solid mechanics, and acoustics. The numerical examples and problem sets facilitate understanding by emphasizing important aspects of both the theory and the numerical results.

Arvustused

"The material is presented in a simple and clear way. The book can be used as a textbook in a course on wave propagation." Mathematical Reviews

Muu info

Presents innovative mathematical theory and corresponding numerical results for wave propagation in layered media with arbitrary amounts of intrinsic absorption.
Preface xi
One-Dimensional Viscoelasticity
1(18)
Constitutive Law
2(3)
Stored and Dissipated Energy
5(2)
Physical Models
7(8)
Equation of Motion
15(2)
Problems
17(2)
Three-Dimensional Viscoelasticity
19(13)
Constitutive Law
19(1)
Stress-Strain Notation
20(3)
Equation of Motion
23(2)
Correspondence Principle
25(1)
Energy Balance
26(4)
Problems
30(2)
Viscoelastic P, SI, and SII Waves
32(66)
Solutions of Equation of Motion
32(5)
Particle Motion for P Waves
37(3)
Particle Motion for Elliptical and Linear S Waves
40(6)
Type-I or Elliptical S (SI) Wave
42(3)
Type-II or Linear S (SII)Wave
45(1)
Energy Characteristics of P, SI, and SII Waves
46(11)
Mean Energy Flux (Mean Intensity)
46(4)
Mean Energy Densities
50(3)
Energy Velocity
53(1)
Mean Rate of Energy Dissipation
54(1)
Reciprocal Quality Factor, Q-1
55(2)
Viscoelasticity Characterized by Parameters for Homogeneous P and S Waves
57(2)
Characteristics of Inhomogeneous Waves in Terms of Characteristics of Homogeneous Waves
59(16)
Wave Speed and Maximum Attenuation
60(4)
Particle Motion for P and SI Waves
64(3)
Energy Characteristics for P, SI, and SII Waves
67(8)
P, SI, and SII Waves in Low-Loss Viscoelastic Media
75(7)
P, SI, and SII Waves in Media with Equal Complex Lame Parameters
82(2)
P, SI, and SII Waves in a Standard Linear Solid
84(2)
Displacement and Volumetric Strain
86(10)
Displacement for General P and SI Waves
86(6)
Volumetric Strain for a General P Wave
92(1)
Simultaneous Measurement of Volumetric Strain and Displacement
93(3)
Problems
96(2)
Framework for Single-Boundary Reflection-Refraction and Surface-Wave Problems
98(9)
Specification of Boundary
98(1)
Specification of Waves
99(7)
Problems
106(1)
General P, SI, and SII Waves Incident on a Viscoelastic Boundary
107(36)
Boundary-Condition Equations for General Waves
107(2)
Incident General SI Wave
109(14)
Specification of Incident General SI Wave
109(2)
Propagation and Attenuation Vectors; Generalized Snell's Law
111(3)
Amplitude and Phase
114(1)
Conditions for Homogeneity and Inhomogeneity
115(5)
Conditions for Critical Angles
120(3)
Incident General P Wave
123(7)
Specification of Incident General P Wave
123(2)
Propagation and Attenuation Vectors; Generalized Snell's Law
125(1)
Amplitude and Phase
126(1)
Conditions for Homogenity and Inhomogeneity
127(2)
Conditions for Critical Angles
129(1)
Incident General SII Wave
130(11)
Specification of Incident General SII Wave
130(1)
Propagation and Attenuation Vectors; Generalized Snell's Law
131(2)
Amplitude and Phase
133(1)
Conditions for Homogeneity and Inhomogeneity
134(1)
Conditions for Critical Angles
134(1)
Energy Flux and Energy Flow Due to Wave Field Interactions
135(6)
Problems
141(2)
Numerical Models for General Waves Reflected and Refracted at Viscoelastic Boundaries
143(27)
General SII Wave Incident on a Moderate-Loss Viscoelastic Boundary (Sediments)
144(11)
Incident Homogeneous SII Wave
145(6)
Incident Inhomogeneous SII Wave
151(4)
P Wave Incident on a Low-Loss Viscoelastic Boundary (Water, Stainless-Steel)
155(14)
Reflected and Refracted Waves
156(7)
Experimental Evidence in Confirmation of Theory for Viscoelastic Waves
163(2)
Viscoelastic Reflection Coefficients for Ocean, Solid-Earth Boundary
165(4)
Problems
169(1)
General SI, P, and SII Waves Incident on a Viscoelastic Free Surface
170(36)
Boundary-Condition Equations
170(2)
Incident General SI Wave
172(20)
Reflected General P and SI Waves
172(4)
Displacement and Volumetric Strain
176(5)
Numerical Model for Low-Loss Media (Weathered Granite)
181(11)
Incident General P Wave
192(11)
Reflected General P and SI Waves
192(4)
Numerical Model for Low-Loss Media (Pierre Shale)
196(7)
Incident General SII Wave
203(1)
Problems
204(2)
Rayleigh-Type Surface Wave on a Viscoelastic Half Space
206(40)
Analytic Solution
206(4)
Physical Characteristics
210(15)
Velocity and Absorption Coefficient
210(1)
Propagation and Attenuation Vectors for Component Solutions
211(1)
Displacement and Particle Motion
212(5)
Volumetric Strain
217(2)
Media with Equal Complex Lame Parameters (Λ=M)
219(6)
Numerical Characteristics of Rayleigh-Type Surface Waves
225(16)
Characteristics at the Free Surface
227(5)
Characteristics Versus Depth
232(9)
Problems
241(5)
General SII Waves Incident on Multiple Layers of Viscoelastic Media
246(16)
Analytic Solution (Multiple Layers)
247(7)
Analytic Solutin (One Layer)
254(1)
Numerical Response of Viscoelastic Layers (Elastic, Earth's Crust, Rock, Soil)
255(6)
Problems
261(1)
Love-Type Surface Waves in Multilayered Viscoelastic Media
262(17)
Analytic Solution (Multiple Layers)
262(3)
Displacement (Multiple Layers)
265(2)
Analytic Solution and Displacement (One Layer)
267(3)
Numerical Characteristics of Love-Type Surface Waves
270(8)
Problems
278(1)
Appendices
279(13)
Appendix 1 - Properties of Riemann-Stieltjes Convolution Integral
279(1)
Appendix 2 - Vector and Displacement-Potential Identities
279(1)
Vector Identities
279(1)
Displacement-Potential Identities
280(1)
Appendix 3 - Solution of the Helmholtz Equation
280(4)
Appendix 4 - Roots of Squared Complex Rayleigh Equation
284(2)
Appendix 5 - Complex Root for a Rayleigh-Type Surface Wave
286(2)
Appendix 6 - Particle-Motion Characteristics for a Rayleigh-Type Surface Wave
288(4)
References 292(3)
Additional Reading 295(1)
Index 296
Roger D. Borcherdt is a research scientist at the United States Geological Survey and consulting professor, Department of Civil and Environmental Engineering at Stanford University, California, where he also served as visiting Shimizu Professor. He holds B.A. and M.A. degrees in theoretical mathematics from the Universities of Colorado and Wisconsin and M.S. and Ph.D. degrees in Engineering Geoscience with minors in Applied Mathematics and Theoretical Statistics from the University of California, Berkeley. He is the author of more than 150 scientific publications including several on the theoretical and empirical aspects of seismic wave propagation pertaining to problems in seismology, geophysics, and earthquake engineering. He is an honorary member of the Earthquake Engineering Research Institute, past editor of Earthquake Spectra and a member of the American Geophysical Union, the Seismological Society of America, the American Society of Civil Engineering, and the Structural Engineering Association of Northern California. He is the recipient of the US Department of Interior Meritorious Service award for scientific leadership in engineering seismology and the 1994 and 2002 Outstanding Paper Awards of Earthquake Spectra. He is a member of several advisory committees, a registered Geophysicist in the State of California (GP 163), and co-inventor of the General Earthquake Observation System (GEOS), patent number 4,603,486.