Muutke küpsiste eelistusi

E-raamat: Viscoelasticity and Collective Cell Migration: An Interdisciplinary Perspective Across Levels of Organization

Edited by (Group Leader, Instituto Gulbenkian de Ciencia (IGC), Lisbon, Portugal), Edited by (Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Serbia)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 13-Jan-2021
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128203118
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 13-Jan-2021
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780128203118
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Viscoelasticity and Collective Cell Migration: An Interdisciplinary Perspective Across Levels of Organization focuses on the main viscoelastic parameters formulated based on multiscale constitutive modeling and how to measure these rheological parameters based on existent micro-devices such as micro-rheology and micro-elastography. The book sheds light on inter-relationships across viscoelasticity scales, an essential step for understanding various biomedical processes such as morphogenesis, wound healing and cancers invasion. Cumulative effects of structural changes at subcellular and cellular levels influence viscoelasticity at a supracellular level are also covered, providing valuable insights for biologists, physicists, engineers, students and researchers in the field of developmental biology.

As this is a complex multidisciplinary field, perspectives are included from experts in biology, biochemistry, biomedicine, biophysics and biorheology. Readers will gain a deeper understanding of the complex dynamics that represent challenges and the necessity for further development in the field.

  • Discusses the biological/biochemical mechanisms of collective cell migration
  • Covers the inter-relation between collective cell migration and viscoelasticity by proposing rheological parameters
  • Contains critical consideration of various experimental techniques that are suitable to measure these parameters
List of Contributors
ix
1 The basics of collective cell migration: unity makes strength
1(20)
Joana E. Saraiva
Elias H. Barriga
1.1 Introduction
1(1)
1.2 Experimental models to study collective cell migration
2(5)
1.3 Using cell---cell junctions to stay as a group and communicate
7(5)
1.4 Future perspectives
12(1)
Acknowledgments
13(1)
References
13(8)
2 The basic concept of viscoelasticity
21(26)
Ivana Pajic-Lijakovic
2.1 Introduction
21(2)
2.2 Linear viscoelasticity: constitutive models
23(8)
2.3 Characteristics of the jamming state as the nonlinear viscoelastic solid
31(5)
2.4 The main characteristics of various viscoelastic models
36(2)
2.5 Relaxation of multicellular systems under externally applied stress conditions
38(4)
2.6 Conclusions
42(1)
Acknowledgment
43(1)
References
43(4)
3 Biophysical origins of viscoelasticity during collective cell migration
47(32)
Andrew G. Clark
3.1 Introduction
47(1)
3.2 Timescale-dependent behavior in viscoelastic materials
48(1)
3.3 Measuring viscoelastic behavior in biology
49(5)
3.4 Viscoelasticity of the actin cytoskeleton
54(5)
3.5 Cell---substrate adhesions and force transmission during migration
59(2)
3.6 Substrate mechanics during migration
61(3)
3.7 Cell---cell adhesion dynamics
64(2)
3.8 Viscoelasticity in collective tissue migration
66(3)
3.9 Conclusion
69(1)
Acknowledgments
69(1)
References
70(9)
4 Fine-tuning viscoelasticity: the key to collectively move in vivo
79(32)
Jaime A. Espina
Elias H. Barriga
4.1 Introduction
79(1)
4.2 Viscoelasticity of cellular components
80(4)
4.3 Sensing and transducing environmental viscoelasticity
84(9)
4.4 Environmental viscoelasticity triggers and directs collective migration
93(4)
4.5 Concluding remarks and future perspectives
97(1)
Acknowledgments
98(1)
References
98(13)
5 Effects of time delays and viscoelastic parameters in oscillatory response of cell monolayers
111(24)
Cristian Borja
Elena Moral
Jose J. Munoz
5.1 Introduction
111(1)
5.2 Planar deformations
112(12)
5.3 Analysis of tissue cross-section
124(6)
5.4 Conclusions
130(1)
Acknowledgments
131(1)
References
131(4)
6 Viscoelastic properties driving collective migration in zebrafish development
135(22)
Timo Betz
6.1 Introduction
135(2)
6.2 Morphogenesis and zebrafish development
137(3)
6.3 Epiboly
140(7)
6.4 Doming
147(1)
6.5 Gastrulation
148(2)
6.6 Somite formation
150(2)
6.7 Outlook
152(2)
References
154(3)
7 Oscillations in collective cell migration
157(36)
Vanni Petrolli
Thomas Boudou
Martial Balland
Giovanni Cappello
7.1 Introduction
157(1)
7.2 Mechanism of collective cell motion
158(2)
7.3 Propagative waves
160(10)
7.4 Standing waves in fully confined monolayers
170(7)
7.5 Mechanical considerations
177(4)
7.6 Discussion
181(2)
7.7 Conclusion and perspective
183(3)
References
186(7)
8 Flow dynamics of 3D multicellular systems into capillaries
193(32)
Karine Guevorkian
Francoise Brochard-Wyart
David Gonzalez-Rodriguez
8.1 Introduction
193(1)
8.2 Micropipette aspiration technique: a practical guide
194(6)
8.3 Viscoelastic behavior of cellular aggregates
200(10)
8.4 Active response of cellular aggregates to mechanical stimuli
210(5)
8.5 Permeability of cellular aggregates
215(4)
8.6 Conclusions and perspectives
219(1)
Acknowledgments
220(1)
References
220(5)
9 Viscoelasticity of multicellular systems caused by collective cell migration: multiscale modeling considerations
225(32)
Ivana Pajic-Lijakovic
Milan Milivojevic
9.1 Introduction
225(2)
9.2 Phenomenological description of long-time rearrangement of multicellular surfaces under external stress
227(3)
9.3 Long-time viscoelasticity at a mesoscopic level---constitutive modeling
230(9)
9.4 Long-time viscoelasticity at a macroscopic level---constitutive modeling
239(11)
9.5 Conclusion
250(1)
Acknowledgment
251(1)
Declaration of interest
251(1)
Appendix 1
251(1)
Appendix 2
252(1)
References
253(4)
10 Recent advances in imaging of cell elasticity
257(30)
Teckla Akinyi
Pol Grasland-Mongrain
Manish Bhatt
Stefan Catheline
Guy Cloutier
10.1 Introduction
257(3)
10.2 Cell structure: key architectural players in elasticity
260(4)
10.3 Estimation of cell elasticity
264(8)
10.4 Rheological modeling of a single cell
272(11)
10.5 Trends in viscoelastography
283(3)
10.6 Summary
286(1)
Acknowledgment 287(1)
References 287(10)
Index 297
Dr. Ivana Pajic-Lijakovic is a scientific advisor at the Department of Chemical Engineering, University of Belgrade, Serbia. Her research interest is related to biological physics, biorheology and biomechanics. She has previously worked as a guest editor for various special issues and has published a book with Elsevier titled: Viscoelasticity and Collective Cell Migration: An Interdisciplinary Perspective Across Levels of Organization” (2021). Her research has been published in multiple leading international peer-reviewed journals. Dr. Elias Barriga is a former University College London postdoc and current group leader at Instituto Gulbenkian de Ciencia (IGC), Portugal Lisbon. His research focuses in understanding how mechano-molecular interactions synchronise morphogenesis in development and regeneration.