Muutke küpsiste eelistusi

E-raamat: Visible Light Communications: Modulation and Signal Processing

(University of Southampton, UK), (University of Science and Technology of China), (Tsinghua University, China), (University of Science and Technology of China)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 139,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A complete and comprehensive reference on modulation and signal processing for visible light communication

This informative new book on state-of-the-art visible light communication (VLC) provides, for the first time, a systematical and advanced treatment of modulation and signal processing for VLC. Visible Light Communications: Modulation and Signal Processing offers a practical guide to designing VLC, linking academic research with commercial applications. 

In recent years, VLC has attracted attention from academia and industry since it has many advantages over the traditional radio frequency, including wide unregulated bandwidth, high security, and low cost. It is a promising complementary technique in 5G and beyond wireless communications, especially in indoor applications. However, lighting constraints have not been fully considered in the open literature when considering VLC system design, and its importance has been underestimated. That’s why this book—written by a team of experts with both academic research experience and industrial development experience in the field—is so welcome. To help readers understand the theory and design of VLC systems, the book:

  • Details many modern techniques on both modulation and signal processing aspects       
  • Links academic research with commercial applications in visible light communications as well as other wireless communication systems
  • Combines theoretical rigor with practical examples in presenting optical camera communication systems

Visible Light Communications: Modulation and Signal Processing serves as a useful tool and reference book for visible light communication professionals, as well as wireless communication system professionals and project managers. It is also an important guide for undergraduates and graduates who want to conduct research in areas of wireless communications.

Preface ix
1 Introduction to Visible Light Communications
1(16)
1.1 History
1(3)
1.2 Advantages and applications
4(2)
1.3 Overview of modulation and signal processing
6(4)
1.4 Standards
10(7)
2 Visible Light Communications: Channel and Capacity
17(40)
2.1 LED characteristics
17(6)
2.1.1 Operation principles
19(2)
2.1.2 LED nonlinearity
21(2)
2.2 LED lighting constraints
23(4)
2.2.1 Dimming control
23(2)
2.2.2 Chromaticity control
25(1)
2.2.3 Ricker-free communication
26(1)
2.3 Photodiode characteristics
27(2)
2.4 Propagation links
29(4)
2.4.1 LOS link
31(1)
2.4.2 NLOS link
32(1)
2.5 Noise in VLC systems
33(2)
2.6 Channel capacity
35(18)
2.6.1 Channel models
36(2)
2.6.2 Capacity bounds for free-space optical intensity channel
38(9)
2.6.3 Capacity bounds for discrete-time Poisson channel
47(3)
2.6.4 Capacity bounds for improved free-space intensity channel
50(3)
2.1 Conclusion
53(4)
3 Single Carrier/Carrierless Modulation and Coding
57(32)
3.1 Pulse amplitude modulation
57(5)
3.2 Pulse position modulation
62(6)
3.3 Carrierless amplitude phase modulation
68(9)
3.3.1 Principles of CAP
69(4)
3.3.2 Multidimensional CAP
73(4)
3.4 Modulation and coding schemes for dimmable VLC
77(5)
3.4.1 Modulation schemes for dimmable VLC
78(2)
3.4.2 Coding schemes for dimmable VLC
80(2)
3.5 Conclusion
82(7)
4 Multicarrier Modulation
89(58)
4.1 Optical OFDM for visible light communications
90(9)
4.1.1 DC-biased optical OFDM
90(3)
4.1.2 ACO-OFDM and PAM-DMT
93(4)
4.1.3 Unipolar OFDM
97(1)
4.1.4 Performance comparison
98(1)
4.2 Performance enhancement for optical OFDM
99(12)
4.2.1 DC bias and scaling optimization
100(3)
4.2.2 LED nonlinearity mitigation
103(4)
4.2.3 PAPR reduction
107(4)
4.3 Spectrum-and power-efficient optical OFDM
111(20)
4.3.1 Hybrid optical OFDM
111(7)
4.3.2 Enhanced U-OFDM
118(3)
4.3.3 Layered ACO-OFDM
121(10)
4.4 Optical OFDM under lighting constraints
131(11)
4.4.1 Pulse width modulation
133(3)
4.4.2 Reverse polarity optical OFDM
136(1)
4.4.3 Asymmetrical hybrid optical OFDM
137(5)
4.5 Conclusion
142(5)
5 Multicolor Modulation
147(22)
5.1 Color shift keying
147(9)
5.1.1 Constellation
148(3)
5.1.2 Color calibration
151(1)
5.1.3 Constellation optimization
152(3)
5.1.4 CSK with Quad-LED
155(1)
5.2 CSK with coded modulation
156(3)
5.3 Wavelength division multiplexing with predistorion
159(607)
5.3.1 System model
160(1)
5.3.2 Receiver-side predistortion
161(3)
5.3.3 Performance evaluation
164(602)
5.4 Conclusion
166(3)
6 Optical MIMO
169(32)
6.1 Non-imaging optical MIMO techniques
170(8)
6.1.1 Channel response
170(1)
6.1.2 Optical MIMO techniques
171(4)
6.1.3 Performance comparison
175(3)
6.2 Imaging optical MIMO techniques
178(2)
6.3 Multiuser precoding techniques
180(10)
6.4 Optical MIMO-OFDM
190(7)
6.4.1 DCO-OFDM-based MU-M1MO VLC
193(1)
6.4.2 ACO-OFDM-based MU-MIMO VLC
194(1)
6.4.3 Performance evaluation
195(2)
6.5 Conclusion
197(4)
7 Signal Processing and Optimization
201(38)
7.1 Sum-rate maximization for the multi-chip-based VLC system
201(71)
7.1.1 System model
202(1)
7.1.2 Constraints on illumination and communication
203(2)
7.1.3 Sum-rate maximization
205(3)
7.1.4 Performance evaluation
208(64)
7.2 Heterogeneous VLC-WiFi optimization
212(1)
7.2.1 System model
213(1)
7.2.2 Efficient VHO scheme
214(5)
7.2.3 Performance evaluation
219(4)
7.3 Signal estimation and modulation design for VLC with SDGN
223(13)
7.3.1 Signal estimation for VLC with SDGN
223(5)
7.3.2 Suboptimal estimation for VLC with SDGN
228(2)
7.3.3 Efficient signal design for VLC with SDGN
230(6)
7.4 Conclusion
236(3)
8 Optical Camera Communication: Fundamentals
239(52)
8.1 Why OCC
239(7)
8.1.1 Wide spectrum
240(1)
8.1.2 Image-sensor-based receiver
240(1)
8.1.3 Advantages of image sensor receiver
241(3)
8.1.4 Challenges for OCC implementation
244(2)
8.2 OCC applications: beyond imaging
246(6)
8.2.1 Indoor localization
246(3)
8.2.2 Intelligent transportation
249(1)
8.2.3 Screen-camera communication
250(1)
8.2.4 Privacy protection
251(1)
8.3 Fundamentals of OCC
252(23)
8.3.1 Optical imaging system
252(1)
8.3.2 Image sensor architecture
253(8)
8.3.3 Noise characteristics in the image-sensor-based receiver
261(9)
8.3.4 Channel model for OCC
270(5)
8.4 Capacity bounds for OCC
275(9)
8.4.1 SISO-OCC channel capacity with M-SDGN
275(1)
8.4.2 Capacity-achieving probability measurement with M-SDGN
276(4)
8.4.3 Capacity of imaging optical MIMO systems with bounded inputs
280(4)
8.5 Outage capacity for OCC with misalignment
284(1)
8.6 Conclusion
285(6)
9 Optical Camera Communication: Modulation and System Design
291(62)
9.1 Coding and decoding
292(5)
9.1.1 Multilevel coding and multi-stage decoding
293(2)
9.1.2 Single-level coding and joint decoding
295(2)
9.2 Modulation schemes
297(12)
9.2.1 Undersampling-based modulation
298(3)
9.2.2 Rolling shutter effect-based modulation
301(3)
9.2.3 Spatial OFDM
304(3)
9.2.4 Spatial WPDM
307(2)
9.3 System impairment factors
309(20)
9.3.1 Impairment factors in spatial OFDM
309(13)
9.3.2 Impairment mitigation techniques
322(7)
9.4 Synchronization in OCC
329(7)
9.4.1 Synchronization challenges
329(2)
9.4.2 Per-line tracking and inter-frame coding
331(2)
9.4.3 Rateless coding
333(3)
9.5 OCC system experimental platform
336(11)
9.5.1 Design and implementation of a real-time OCC system
336(11)
9.6 Conclusion
347(6)
10 Index
353
ZHAOCHENG WANG, PhD, is a Professor at the Department of Electronic Engineering at Tsinghua University, China. Dr. Wang previously published Millimeter Wave Communication Systems with Wiley-IEEE Press.

QI WANG, PhD, is a Research Fellow at the School of Electronics and Computer Science at University of Southampton, United Kingdom.

WEI HUANG, PhD, is an academic member of the School of Information Science and Technology, University of Science and Technology of China.

ZHENGYUAN XU, PhD, is a Professor at the School of Information Science and Technology, University of Science and Technology of China.