Muutke küpsiste eelistusi

E-raamat: Visible Light Photocatalysis in Organic Chemistry

Edited by (Boston University, Boston, USA), Edited by , Edited by (University of Wisconsin-Madison, Madison, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Feb-2018
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527674176
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 172,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 07-Feb-2018
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527674176
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Filling the need for a ready reference that reflects the vast developments in this field, this book presents everything from fundamentals, applications, various reaction types, and technical applications. Edited by rising stars in the scientific community, the text focuses solely on visible light photocatalysis in the context of organic chemistry. This primarily entails photoinduced electron transfer and energy transfer chemistry sensitized by polypyridyl complexes, yet also includes the use of organic dyes and heterogeneous catalysts. A valuable resource to the synthetic organic community, polymer and medicinal chemists, as well as industry professionals.
1 An Overview of the Physical and Photophysical Properties of [ Ru(bpy)3]2+ 1(24)
Daniela M. Arias-Rotondo
James K. McCusker
1.1 Introduction
1(3)
1.2 [ Ru(bpy)3]2+: Optical and Electrochemical Properties
4(4)
1.2.1 Optical Properties
4(2)
1.2.2 Electrochemical Properties
6(2)
1.3 Excited State Kinetics
8(3)
1.3.1 Steady-State Emission
8(2)
1.3.2 Time-Resolved Emission
10(1)
1.4 Excited-State Reactivity of [ Ru(bpy)3]2+
11(1)
1.5 Energy Transfer: Forster and Dexter Mechanisms
12(2)
1.6 Electron Transfer
14(1)
1.7 Probing the Mechanism, Stage I: Stern-Volmer Quenching Studies
14(2)
1.8 Probing the Mechanism, Stage II: Electron Versus Energy Transfer
16(4)
1.9 Designing Photocatalysts: [ Ru(bpy)3]2+ as a Starting Point
20(2)
1.10 Conclusion
22(1)
References
23(2)
2 Visible-Light-Mediated Free Radical Synthesis 25(48)
Louis Fensterbank
Jean-Philippe Goddard
Cyril Ollivier
2.1 Introduction
25(1)
2.2 Basics of the Photocatalytic Cycle
26(1)
2.3 Generation of Radicals
27(3)
2.3.1 Formation of C-Centered Radicals
27(3)
2.3.1.1 Dehalogenation (I, Br, Cl)
27(2)
2.3.1.2 Other C-Heteroatom Cleavage
29(1)
2.3.1.3 C-C Bond Cleavage
29(1)
2.3.2 Formation of N-Centered Radicals
30(1)
2.4 C-X Bond Formation
30(5)
2.4.1 C-O Bond
30(2)
2.4.2 C-N Bond
32(1)
2.4.3 C-S and C-Se Bonds
33(1)
2.4.4 C-Br Bond
34(1)
2.4.5 C-F Bond
34(1)
2.4.6 C-B Bond
35(1)
2.5 C-C Bond Formation
35(14)
2.5.1 Formation and Reactivity of Aryl Radicals
35(5)
2.5.2 Formation and Reactivity of Trifluoromethyl and Related Radicals
40(5)
2.5.2.1 Photocatalyzed Reduction of Perfluorohalogen Derivatives
40(2)
2.5.2.2 Photocatalyzed Reduction of Perfluoroalkyl-Substituted Onium Salts
42(1)
2.5.2.3 Photocatalyzed Formation of Perfluoroalkyl Radicals from Sulfonyl and Sulfinyl Derivatives
43(2)
2.5.3 Formation and Reactivity of Alkyl and Related Radicals
45(4)
2.5.3.1 C-C Bond Formation Through Photocatalyzed Reduction of Halogen Derivatives and Analogs
45(2)
2.5.3.2 C-C Bond Formation Through Photocatalyzed Oxidation of Electron-Rich Functional Group
47(1)
2.5.3.3 C-C Bond Formation Through Photocatalyzed Oxidation of Amino Group
48(1)
2.6 Radical Cascade Applications
49(10)
2.6.1 Intramolecular Polycyclization Processes
49(2)
2.6.2 Sequential Inter- and Intramolecular Processes
51(5)
2.6.3 Sequential Radical and Polar Processes
56(3)
References
59(14)
3 Atom Transfer Radical Addition using Photoredox Catalysis 73(20)
Theresa M. Williams
Corey R.J. Stephenson
3.1 Introduction
73(4)
3.2 Transition Metal-Catalyzed ATRA
77(7)
3.2.1 Ruthenium- and Iridium-Based ATRA
77(4)
3.2.1.1 Mechanistic Investigations
77(3)
3.2.1.2 Ruthenium- and Iridium-Based ATRA
80(1)
3.2.2 Copper-Mediated ATRA
81(3)
3.2.2.1 Trifluoromethylation
82(2)
3.3 Other Photocatalysts for ATRA Transformations
84(2)
3.3.1 p-Anisaldehyde
84(2)
3.4 Semiconductor
86(1)
3.5 Atom Transfer Radical Cyclization (ATRC)
87(2)
3.6 Atom Transfer Radical Polymerization (ATRP)
89(1)
3.7 Conclusion
90(1)
References
90(3)
4 Visible Light Mediated α-Amino C-H Functionalization Reactions 93(36)
You-Quan Zou
Wen-ling Xiao
4.1 Introduction
93(2)
4.2 Visible Light Mediated α-Amino C-H Functionalization Via Iminium Ions
95(21)
4.2.1 Aza-Henry Reaction
95(5)
4.2.2 Mannich Reaction
100(4)
4.2.3 Strecker Reaction
104(1)
4.2.4 Friedel-Crafts Reaction
105(3)
4.2.5 Alkynylation Reaction
108(1)
4.2.6 Phosphonation Reaction
109(1)
4.2.7 Addition of 1,3-Dicarbonyls
109(1)
4.2.8 Formation of C-N and C-O Bonds
110(2)
4.2.9 Miscellaneous
112(4)
4.3 Visible Light Mediated α-Amino C-H Functionalization Via α-Amino Radicals
116(5)
4.3.1 Addition to Electron-Deficient Aromatics
116(1)
4.3.2 Addition to Electron-Deficient Alkenes
116(4)
4.3.3 Miscellaneous
120(1)
4.4 Conclusions and Perspectives
121(1)
References
122(7)
5 Visible Light Mediated Cycloaddition Reactions 129(30)
Scott Morris
Theresa Nguyen
Nan Zheng
5.1 Introduction
129(1)
5.2 [ 2+2] Cycloadditions: Formation of Four-Membered Rings
130(13)
5.2.1 Introduction to [ 2+2] Cycloadditions
130(1)
5.2.2 Utilization of the Reductive Quenching Cycle
130(5)
5.2.3 Utilization of the Oxidative Quenching Cycle
135(4)
5.2.4 Utilization of Energy Transfer
139(3)
5.2.5 [ 2+2] Conclusion
142(1)
5.3 [ 3+2] Cycloadditions: Formation of Five-Membered Rings
143(6)
5.3.1 Introduction to [ 3+2] Cycloadditions
143(1)
5.3.2 [ 3+2] Cycloaddition of Cyclopropylamines
143(2)
5.3.3 1,3-Dipolar Cycloaddition of Azomethine Ylides
145(1)
5.3.4 [ 3+2] Cycloaddition of Aryl Cyclopropyl Ketones
146(1)
5.3.5 [ 3+2] Cycloaddition via ATRA/ATRC
146(2)
5.3.6 [ 3+2] Conclusion
148(1)
5.4 [ 4+2] Cycloadditions: Formation of Six-Membered Rings
149(6)
5.4.1 Introduction to [ 4+2] Cycloadditions
149(1)
5.4.2 [ 4+2] Cycloadditions Using Radical Anions
149(2)
5.4.3 [ 4+2] Cycloadditions Using Radical Cations
151(3)
5.4.4 [ 4+2] Conclusion
154(1)
5.5 Conclusion
155(1)
References
156(3)
6 Metal-Free Photo(redox) Catalysis 159(74)
Kirsten Zeitler
6.1 Introduction
159(7)
6.1.1 Background
162(1)
6.1.2 Classes of Organic Photocatalysts
162(4)
6.2 Applications of Organic Photocatalysts
166(58)
6.2.1 Energy Transfer Reactions
166(5)
6.2.2 Reductive Quenching of the Catalyst
171(32)
6.2.2.1 Cyanoarenes
171(1)
6.2.2.2 Quinones
172(1)
6.2.2.3 Cationic Dyes: Pyrylium, Quinolinium, and Acridinium Scaffolds
173(15)
6.2.2.4 Xanthene Dyes and Further Aromatic Scaffolds
188(15)
6.2.3 Oxidative Quenching of the Catalyst
203(11)
6.2.4 New Developments
214(39)
6.2.4.1 Upconversion
215(1)
6.2.4.2 Consecutive Photoelectron Transfer
215(1)
6.2.4.3 Multicatalysis
216(8)
6.3 Conclusion and Outlook
224(1)
References
224(9)
7 Visible Light and Copper Complexes: A Promising Match in Photoredox Catalysis 233(20)
Suva Paria
Oliver Reiser
7.1 Introduction
233(1)
7.2 Photophysical Properties of Copper Catalysts
234(3)
7.3 Application of Copper Based Photocatalysts in Organic Synthesis
237(10)
7.4 Outlook
247(1)
Acknowledgment
248(1)
References
248(5)
8 Arene Functionalization by Visible Light Photoredox Catalysis 253(30)
Durga Hari Prasad
Thea Hering
Burkhard Konig
8.1 Introduction
253(21)
8.1.1 Aryl Diazonium Salts
253(15)
8.1.2 Diaryl Iodonium Salts
268(4)
8.1.3 Triaryl Sulfonium Salts
272(1)
8.1.4 Aryl Sulfonyl Chlorides
273(1)
8.2 Applications of Aryl Diazonium Salts
274(2)
8.3 Photoinduced Ullmann C-N Coupling
276(2)
8.4 Conclusion
278(1)
References
278(5)
9 Visible-Light Photocatalysis in the Synthesis of Natural Products 283(16)
Gregory L. Lackner
Kyle W. Quasdorf
Larry E. Overman
References
295(4)
10 Dual Photoredox Catalysis: The Merger of Photoredox Catalysis with Other Catalytic Activation Modes 299(36)
Christopher K. Prier
David W.C. MacMillan
10.1 Introduction
299(1)
10.2 Merger of Photoredox Catalysis with Organocatalysis
300(14)
10.3 Merger of Photoredox Catalysis with Acid Catalysis
314(6)
10.3.1 Photoredox Catalysis and Bronsted Acid Catalysis
314(4)
10.3.2 Photoredox Catalysis and Lewis Acid Catalysis
318(2)
10.4 Merger of Photoredox Catalysis with Transition Metal Catalysis
320(8)
10.5 Conclusions
328(1)
References
328(7)
11 Enantioselective Photocatalysis 335(28)
Susannah C. Coote
Thorsten Bach
11.1 Introduction
335(1)
11.2 The Twentieth Century: Pioneering Work
336(5)
11.3 The Twenty-First Century: Contemporary Developments
341(16)
11.3.1 Large-Molecule Chiral Hosts
341(2)
11.3.2 Small-Molecule Chiral Photosensitizers
343(10)
11.3.3 Lewis Acid-Mediated Photoreactions
353(4)
11.4 Conclusions and Outlook
357(1)
References
358(5)
12 Photomediated Controlled Polymerizations 363(26)
Nicolas J. Treat
Brett P. Fors
Craig J. Hawker
12.1 Catalyst Activation by Light
365(18)
12.1.1 Cu-Catalyzed Photoregulated Atom Transfer Radical Polymerizations (photoATRP)
365(3)
12.1.2 Photomediated ATRP with Non-Copper-Based Catalyst Systems
368(3)
12.1.3 Iodine-Mediated Photopolymerizations
371(4)
12.1.4 Metal-Free Photomediated Ring-Opening Metathesis Polymerization
375(1)
12.1.5 Photoregulated Reversible-Addition Fragmentation Chain Transfer Polymerizations (photoRAFT)
376(7)
12.2 Chain-End Activation by Light
383(1)
12.3 Conclusions
384(1)
References
385(4)
13 Accelerating Visible-Light Photoredox Catalysis in Continuous-Flow Reactors 389(26)
Natan J.W. Straathof
Timothy Noel
13.1 Introduction
389(3)
13.2 Homogeneous Photocatalysis in Single-Phase Flow
392(9)
13.3 Gas-liquid Photocatalysis in Flow
401(7)
13.4 Heterogeneous Photocatalysis in Flow
408(2)
13.5 Conclusions
410(1)
Conflict of Interest
410(1)
References
410(5)
14 The Application of Visible-Light-Mediated Reactions to the Synthesis of Pharmaceutical Compounds 415(16)
James. J. Douglas
14.1 Introduction
415(1)
14.2 Asymmetric Benzylation
415(1)
14.3 Amide Bond Formation
416(1)
14.4 C-H Azidation
417(1)
14.5 Visible-Light-Mediated Benzothiophene Synthesis
418(1)
14.6 α-Amino Radical Functionalization
419(3)
14.7 Visible-Light-Mediated Radical Smiles Rearrangement
422(1)
14.8 Photoredox and Nickel Dual Catalysis
423(3)
14.9 The Scale-Up of Visible-Light-Mediated Reactions Via Continuous Processing
426(2)
References
428(3)
Index 431
Corey R. J. Stephenson is Professor at University of Michigan. He received his undergraduate degree in chemistry at the University of Waterloo, followed by his PhD at the University of Pittsburgh. After post-doctoral studies at the ETH in Zürich, Switzerland, he worked at the Department of Chemistry at Boston University, before joining University of Michigan.

Tehshik P. Yoon is Professor at the University of Wisconsin-Madison. After his graduate studies at Harvard University, he finished his PhD under the guidance of Prof. MacMillan at Caltech, Pasadena and was postdoctoral fellow in the group of Eric Jacobsen at Harvard.

David W. C. MacMillan is Professor at Princeton University. He received his undergraduate degree in chemistry at the University of Glasgow, followed by a PhD at the University of California, Irvine, before undertaking a postdoctoral position at Harvard University. He began his independent career at University of California, Berkeley in 1998 before moving to Caltech in 2000. In 2006, he became James S. McDonnell Distinguished University Professor at Princeton University, where he served as Department Chair from 2010-15.