Muutke küpsiste eelistusi

E-raamat: Visualization of Fields and Applications in Engineering

  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Apr-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470978269
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 125,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Apr-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470978269
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Visualization of Fields and Applications in Engineering presents the basic techniques for tensor field visualization and mapping from an engineering approach. Focusing on the fundamental aspects of post processing databases and applications, the author explores existing theories and their integration in tensor field visualization and analysis. Examples cover a variety of problems from mechanical, civil to electrical engineering with applications beyond and across many disciplines. The subject is presented logically from fundamental theories to integrated, multi-disciplinary technologies with practical applications in engineering, computer sciences and visual/general sciences. 

Driven by computer technology, the analysis of transport phenomena has developed rapid and extensively in recent times and it is timely to introduce the subject from an engineering viewpoint. The materials are suitable for a senior/graduate course and to serve as a source of reference for those who work in engineering/science professions or in pursuit of academic training/research.

  • Offers a unique engineering approach to basic techniques for tensor field visualization and mapping
  • Collates together material currently disseminated throughout the literature into one accessible point of reference
  • Explores a variety of sample problems from mechanical, civil to electrical engineering with applications beyond and across many disciplines
Preface ix
1 Introduction
1(10)
1.1 A General View
1(2)
1.2 Historical Development and Progress in Visual Science
3(4)
1.3 Scientific Visualization Philosophy, Techniques and Challenges
7(4)
2 Field Descriptions and Kinematics
11(52)
2.1 Lagrangian/Eulerian Description and Transformation
11(4)
2.2 Curvilinear Coordinates
15(34)
2.2.1 Polar Coordinate
24(5)
2.2.2 Streamline (Flux Line) Coordinates
29(14)
2.2.3 Potential-Stream Function Coordinates
43(6)
2.3 Field Kinematics and Visual Attributes
49(14)
2.3.1 Field Line Trajectory
49(1)
2.3.2 Field Line Integral Curves
50(4)
2.3.3 Field Lines, Material Lines and Path Lines
54(2)
2.3.4 Streamlines (Flux Lines)
56(7)
3 Field Model, Representation and Visualization
63(34)
3.1 Field Models and Concepts
63(2)
3.2 Scalar Fields and Representation
65(3)
3.3 Vector Fields and Representation
68(1)
3.4 Vector Icons and Classifications
69(2)
3.4.1 Classification Based on Domain Configurations
70(1)
3.4.2 Classification Based on Information Levels
70(1)
3.4.3 Classification Based on Topological Skeleton
71(1)
3.5 Scalar Potential
71(3)
3.6 Vector Potential
74(3)
3.7 Vector Field Specification
77(2)
3.7.1 Helmholtz's Theorem
77(2)
3.8 Tensor Contraction and Transport Process Visualization
79(6)
3.8.1 Mechanical Energy Function and Heatfunction
80(4)
3.8.2 Strain Energy Trajectory and Strain Function
84(1)
3.9 Multiple Fields
85(12)
4 Complex Analysis and Complex Potentials
97(30)
4.1 Complex Variables/Functions and Applications
97(3)
4.2 Complex Analysis and Cauchy-Riemann Equation
100(1)
4.3 Differentiation of Complex Function
101(3)
4.4 Integration of Complex Functions
104(3)
4.5 Visualization of Complex Potentials
107(7)
4.5.1 Trajectory Method
107(1)
4.5.2 Method of Curvilinear Squares
108(3)
4.5.3 Transfer Characteristics and Field Property Evaluation
111(3)
4.6 Example 4.1a Visualization of Heat and Fluid Transport in a Corner
114(13)
5 Field Mapping and Applications
127(72)
5.1 Introduction
127(2)
5.2 Mapping of Euclidean Geometry
129(4)
5.2.1 Congruent Mapping
129(2)
5.2.2 Similitude Mapping
131(1)
5.2.3 Affine Mapping
132(1)
5.3 Inversion Mapping
133(2)
5.3.1 Circle Inversion
134(1)
5.4 Mapping with Complex Functions
135(2)
5.5 Conformal Mapping and Applications
137(10)
5.6 Hodograph Method and Mapping
147(2)
5.6.1 Conjugate Hodograph
148(1)
5.6.2 Hodograph
149(1)
5.7 Hodograph Representations and Applications
149(34)
5.7.1 Straight Boundaries
156(2)
5.7.2 Free Surface
158(2)
5.7.3 Special Field Patterns
160(3)
5.7.4 Projectile Trajectory in Constant Force Fields
163(6)
5.7.5 Motion Trajectory in Central Force Fields
169(10)
5.7.6 Trajectory of Charged Particles in Uniform Magnetic Fields
179(4)
5.8 Example 4.1b Mapping of Field Patterns and Image Warping
183(16)
6 Tensor Representation, Contraction and Visualization
199(50)
6.1 Introduction
199(1)
6.2 Development of Tensor Visualization Techniques
200(1)
6.2.1 Mohr's Circle
200(1)
6.2.2 Tensor Field Line Trajectories (Lines of Principal Stress)
200(1)
6.2.3 Isochromatics
201(1)
6.2.4 Isoclines
201(1)
6.2.5 Stress Trajectories
201(1)
6.2.6 Slip Lines
201(1)
6.2.7 Isopachs
201(1)
6.3 Tensor Description and Representation
201(3)
6.3.1 Tensor Icons and Classification
204(1)
6.4 Tensor Decomposition and Tensor Rank Reduction
204(10)
6.4.1 Strain Tensor and Stress Tensor
206(1)
6.4.2 Rotation Tensor
207(1)
6.4.3 Rate of Strain Tensor and Viscous Stress Tensor
208(2)
6.4.4 Vorticity Tensor
210(3)
6.4.5 Tensor Contractions: Tensor Vector on a Reference Plane
213(1)
6.4.6 Tensor Contractions: Tensor Vector at a Point
214(1)
6.5 Visualization of Symmetric Tensors
214(14)
6.5.1 Tensor Invariants
214(3)
6.5.2 Tensor Transformation
217(1)
6.5.3 Principal States and Eigenanalysis
217(10)
6.5.4 Hybrid Method of Tensor Visualization
227(1)
6.6 Visualization of Antisymmetric Tensors
228(14)
6.6.1 Vorticity Concepts and Dynamics
228(4)
6.6.2 Forced Vortex
232(5)
6.6.3 Free Vortex
237(3)
6.6.4 Vortices Transport and Vorticity Function
240(2)
6.7 Example: 4.1c Convective Momentum Flux Tensor Visualization
242(7)
7 Critical Point Topology, Classification and Visualization
249(24)
7.1 Introduction
249(2)
7.2 Complex Analysis of Critical Point
251(6)
7.3 Critical Point Theory and Classification
257(6)
7.3.1 Symmetric Tensor: [ V] = [ V]T; Im1 = Im2 = 0
261(1)
7.3.2 Antisymmetric Tensor: ii = 0, i = j; ij = -ji, i j
262(1)
7.3.3 Symmetric Tensor
262(1)
7.4 Example 4.1d Critical Point Topology
263(2)
7.5 Singular Point Visualization and Mapping
265(1)
7.6 Example 7.1 Mapping of a Point Source
266(7)
8 Engineering Application Examples
273(92)
8.1 Example 8.1: Torsion of a Square Beam
273(29)
8.2 Example 8.2: Bending of a Cantilever Beam Subject to a Point Load
302(21)
8.3 Example 8.3: Squeezing Flow and Vorticity Transport
323(22)
8.4 Example 8.4: Groundwater Flows in an Anisotropic Porous Medium
345(20)
References 365(4)
Index 369
Stephen Tou, National University, San Diego, USA Dr Stephen Tou joined the National University in San Diego, USA as an Adjunct Professor in 2006, having previously been with the Department of Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore as an associate professor for 20 years. He teaches a graduate course in transport phenomena and undergraduate courses in fluid mechanics, energy systems & heat transfer, environmental fluid mechanics, energy conversion systems and machinery, and engineering mathematics. He has published circa 60 refereed journal papers and 20 conference papers.