Muutke küpsiste eelistusi

E-raamat: Visualization and Verbalization of Data

Edited by (Universitat Pompeu Fabra, Barcelona, Spain), Edited by (University of Bonn, Germany)
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Visualization and Verbalization of Data shows how correspondence analysis and related techniques enable the display of data in graphical form, which results in the verbalization of the structures in data. Renowned researchers in the field trace the history of these techniques and cover their current applications.

The first part of the book explains the historical origins of correspondence analysis and associated methods. The second part concentrates on the contributions made by the school of Jean-Paul Benzécri and related movements, such as social space and geometric data analysis. Although these topics are viewed from a French perspective, the book makes them understandable to an international audience.

Throughout the text, well-known experts illustrate the use of the methods in practice. Examples include the spatial visualization of multivariate data, cluster analysis in computer science, the transformation of a textual data set into numerical data, the use of quantitative and qualitative variables in multiple factor analysis, different possibilities of recoding data prior to visualization, and the application of duality diagram theory to the analysis of a contingency table.

Arvustused

"This book presents a set of techniques for data analysis, together with the history of how these methods were developed. The audience seems to be those who are interested in these techniques, or, invested already in them, are curious about the history and intellectual process that led to their development VAVOD [ Visualization and Verbalization of Data] is a worthwhile read. Many of the chapters can be used as stand-alone introductions to particular techniques, including both theory and applications; as a collection, they offer a somewhat uneven but wide ranging and far reaching overview of a vibrant field of intellectual activity. The fact that many of the chapters are written by founders of the field, writing about techniques they created, refined and developed over decades, lends this book unusual gravitas as both a work of reference and as a document." Omar De la Cruz Cabrera, Kent State University, in The American Statistician, August 2016

"Given the continuing digitization of all facets of modern societies, we are fed with rapidly growing masses of data. At this pace, visualization is one decisive step to go beyond the factual knowledge of distributions to the recognition of conceptual spaces by advanced analytic methods. The big challenge will continue to be the verbalization of what we see as results of the analyses. This book lays the ground for significant advances on the way forward." From the Foreword by Ekkehard Mochmann, Cologne

Foreword xi
Preface xiii
Editors xix
Contributors xxi
Prologue: Let the Data Speak! xxvii
Richard Volpato
Section I History of Correspondence Analysis and Related Methods
1 Some Prehistory of CARME: Visual Language and Visual Thinking
3(14)
Michael Friendly
Matthew Sigal
2 Some History of Algebraic Canonical Forms and Data Analysis
17(14)
John C. Gower
3 Historical Elements of Correspondence Analysis and Multiple Correspondence Analysis
31(14)
Ludovic Lebart
Gilbert Saporta
4 History of Nonlinear Principal Component Analysis
45(16)
Jan de Leeuw
5 History of Canonical Correspondence Analysis
61(16)
Cajo J. F. ter Braak
6 History of Multiway Component Analysis and Three-Way Correspondence Analysis
77(18)
Pieter M. Kroonenberg
7 Past, Present, and Future of Multidimensional Scaling
95(22)
Patrick J. F. Groenen
Ingwer Borg
8 History of Cluster Analysis
117(20)
Fionn Murtagh
Section II Contribution of Benzecri and the French School
9 Simple Correspondence Analysis
137(12)
Pierre Cazes
10 Distributional Equivalence and Linguistics
149(16)
Monica Becue-Bertaut
11 Multiple Correspondence Analysis
165(20)
Francois Husson
Julie Josse
12 Structured Data Analysis
185(20)
Brigitte Le Roux
13 Empirical Construction of Bourdieu's Social Space
205(18)
Jorg Blasius
Andreas Schmitz
14 Multiple Factor Analysis: General Presentation and Comparison with STATIS
223(16)
Jerome Pages
15 Data Doubling and Fuzzy Coding
239(16)
Michael Greenacre
16 Symbolic Data Analysis: A Factorial Approach Based on Fuzzy Coded Data
255(16)
Rosanna Verde
Edwin Diday
17 Group Average Linkage Compared to Ward's Method in Hierarchical Clustering
271(18)
Maurice Roux
18 Analysing a Pair of Tables: Coinertia Analysis and Duality Diagrams
289(12)
Stephane Dray
References 301(38)
Index 339
Jorg Blasius, Michael Greenacre