Muutke küpsiste eelistusi

E-raamat: In Vivo NMR Spectroscopy: Principles and Techniques

(Utrecht University, The Netherlands)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Dec-2018
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119382577
  • Formaat - PDF+DRM
  • Hind: 137,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Dec-2018
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119382577

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy

This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques.

The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses.

  • Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists
  • Features more experimental methodology than the previous edition
  • End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations
  • Designed to be used in conjunction with a teaching course on the subject

In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.

 

Preface xv
Abbreviations xvii
Supplementary Material xxiv
1 Basic Principles
1(1)
1.1 Introduction
1(2)
1.2 Classical Magnetic Moments
3(2)
1.3 Nuclear Magnetization
5(4)
1.4 Nuclear Induction
9(2)
1.5 Rotating Frame of Reference
11(1)
1.6 Transverse T2 and T2* Relaxation
12(4)
1.7 Bloch Equations
16(1)
1.8 Fourier Transform NMR
17(3)
1.9 Chemical Shift
20(3)
1.10 Digital NMR
23(1)
1.10.1 Analog-to-digital Conversion
23(2)
1.10.2 Signal Averaging
25(1)
1.10.3 Digital Fourier Transformation
25(1)
1.10.4 Zero Filling
25(1)
1.10.5 Apodization
26(2)
1.11 Quantum Description of NMR
28(2)
1.12 Scalar Coupling
30(3)
1.13 Chemical and Magnetic Equivalence
33(4)
Exercises
37(3)
References
40(3)
2 In Vivo NMR Spectroscopy - Static Aspects
43(1)
2.1 Introduction
43(1)
2.2 Proton NMR Spectroscopy
43(47)
2.2.1 Acetate (Ace)
52(1)
2.2.2 N-Acetyl Aspartate (NAA)
52(1)
2.2.3 N-Acetyl Aspartyl Glutamate (NAAG)
53(1)
2.2.4 Adenosine Triphosphate (ATP)
54(1)
2.2.5 Alanine (Ala)
55(1)
2.2.6 γ-Aminobutyric Acid (GABA)
56(1)
2.2.7 Ascorbic Acid (Asc)
57(1)
2.2.8 Aspartic Acid (Asp)
58(1)
2.2.9 Branched-chain Amino Acids (Isoleucine, Leucine, and Valine)
58(1)
2.2.10 Choline-containing Compounds (tCho)
59(2)
2.2.11 Creatine (Cr) and Phosphocreatine (PCr)
61(1)
2.2.12 Ethanol
62(1)
2.2.13 Ethanolamine (EA) and Phosphorylethanolamine (PE)
63(1)
2.2.14 Glucose (Glc)
63(1)
2.2.15 Glutamate (Glu)
64(1)
2.2.16 Glutamine (Gin)
65(1)
2.2.17 Glutathione (GSH)
66(1)
2.2.18 Glycerol
67(1)
2.2.19 Glycine
68(1)
2.2.20 Glycogen
68(1)
2.2.21 Histidine
69(1)
2.2.22 Homocarnosine
70(1)
2.2.23 β-Hydoxybutyrate (BHB)
70(1)
2.2.24 2-Hydroxyglutarate (2HG)
71(1)
2.2.25 myo-Inositol (mI) and scyllo-Inositol (sI)
72(1)
2.2.26 Lactate (Lac)
73(1)
2.2.27 Macromolecules
74(2)
2.2.28 Nicotinamide Adenine Dinucleotide (NAD+)
76(1)
2.2.29 Phenylalanine
76(1)
2.2.30 Pyruvate
77(1)
2.2.31 Serine
78(1)
2.2.32 Succinate
79(1)
2.2.33 Taurine (Tau)
79(1)
2.2.34 Threonine (Thr)
80(1)
2.2.35 Tryptophan (Trp)
80(1)
2.2.36 Tyrosine (Tyr)
80(1)
2.2.37 Water
81(1)
2.2.38 Non-cerebral Metabolites
82(1)
2.2.39 Carnitine and Acetyl-carnitine
82(2)
2.2.40 Carnosine
84(2)
2.2.41 Citric Acid
86(1)
2.2.42 Deoxymyoglobin (DMb)
87(1)
2.2.43 Lipids
87(2)
2.2.44 Spermine and Polyamines
89(1)
2.3 Phosphorus-31 NMR Spectroscopy
90(3)
2.3.1 Chemical Shifts
90(2)
2.3.2 Intracellular pH
92(1)
2.4 Carbon-13 NMR Spectroscopy
93(1)
2.4.1 Chemical Shifts
93(3)
2.5 Sodium-23 NMR Spectroscopy
96(6)
2.6 Fluorine-19 NMR Spectroscopy
102(2)
2.7 In vivo NMR on Other Non-proton Nuclei
104(2)
Exercises
106(2)
References
108(21)
3 In Vivo NMR Spectroscopy - Dynamic Aspects
129(1)
3.1 Introduction
129(1)
3.2 Relaxation
129(1)
3.2.1 General Principles of Dipolar Relaxation
129(4)
3.2.2 Nuclear Overhauser Effect
133(1)
3.2.3 Alternative Relaxation Mechanisms
134(3)
3.2.4 Effects of T1 Relaxation
137(1)
3.2.5 Effects of T2 Relaxation
138(3)
3.2.6 Measurement of T1 and T2 Relaxation
141(1)
3.2.6.1 T1 Relaxation
141(1)
3.2.6.2 Inversion Recovery
141(1)
3.2.6.3 Saturation Recovery
142(1)
3.2.6.4 Variable Nutation Angle
142(1)
3.2.6.5 MR Fingerprinting
143(1)
3.2.6.6 T2 Relaxation
143(1)
3.2.7 In Vivo Relaxation
144(3)
3.3 Magnetization Transfer
147(2)
3.3.1 Principles of MT
149(1)
3.3.2 MT Methods
150(2)
3.3.3 Multiple Exchange Reactions
152(1)
3.3.4 MT Contrast
152(4)
3.3.5 Chemical Exchange Saturation Transfer (CEST)
156(4)
3.4 Diffusion
160(5)
3.4.1 Principles of Diffusion
160(1)
3.4.2 Diffusion and NMR
160(9)
3.4.3 Anisotropic Diffusion
169(4)
3.4.4 Restricted Diffusion
173(2)
3.5 Dynamic NMR of Isotopically-Enriched Substrates
175(2)
3.5.1 General Principles and Setup
177(1)
3.5.2 Metabolic Modeling
177(7)
3.5.3 Thermally Polarized Dynamic 13C NMR Spectroscopy
184(1)
3.5.3.1 [ 1-13C]-Glucoseand [ 1,6-13C2]-Glucose
184(1)
3.5.3.2 [ 2-13C]-Glucose
185(2)
3.5.3.3 [ U-13C6]-Glucose
187(1)
3.5.3.4 [ 2-13C]-Acetate
187(2)
3.5.4 Hyperpolarized Dynamic 13C NMR Spectroscopy
189(1)
3.5.4.1 Brute Force Hyperpolarization
189(1)
3.5.4.2 Optical Pumping of Noble Gases
190(1)
3.5.4.3 Parahydrogen-induced Polarization (PHIP)
191(2)
3.5.4.4 Signal Amplification by Reversible Exchange (SABRE)
193(1)
3.5.4.5 Dynamic Nuclear Polarization (DNP)
193(3)
3.5.5 Deuterium Metabolic Imaging (DMI)
196(1)
Exercises
197(2)
References
199(12)
4 Magnetic Resonance imaging
211(1)
4.1 Introduction
211(1)
4.2 Magnetic Field Gradients
211(1)
4.3 Slice Selection
212(3)
4.4 Frequency Encoding
215(4)
4.4.1 Principle
215(1)
4.4.2 Echo Formation
216(3)
4.5 Phase Encoding
219(2)
4.6 Spatial Frequency Space
221(4)
4.7 Fast MRI Sequences
225(9)
4.7.1 Reduced TR Methods
225(1)
4.7.2 Rapid k-Space Traversal
226(3)
4.7.3 Parallel MRI
229(1)
4.7.3.1 SENSE
230(3)
4.7.3.2 GRAPPA
233(1)
4.8 Contrast in MRI
234(2)
4.8.1 Ti and T2 Relaxation Mapping
236(3)
4.8.2 Magnetic Field B0 Mapping
239(2)
4.8.3 Magnetic Field B1 Mapping
241(1)
4.8.4 Alternative Image Contrast Mechanisms
242(1)
4.8.5 Functional MRI
243(2)
Exercises
245(4)
References
249(4)
5 Radiofrequency Pulses
253(1)
5.1 Introduction
253(1)
5.2 Square RF Pulses
253(6)
5.3 Selective RF Pulses
259(1)
5.3.1 Fourier-transform-based RF Pulses
260(2)
5.3.2 RF Pulse Characteristics
262(4)
5.3.3 Optimized RF Pulses
266(3)
5.3.4 Multifrequency RF Pulses
269(2)
5.4 Composite RF Pulses
271(2)
5.5 Adiabatic RF Pulses
273(2)
5.5.1 Rotating Frame of Reference
275(1)
5.5.2 Adiabatic Condition
276(2)
5.5.3 Modulation Functions
278(2)
5.5.4 AFP Refocusing
280(2)
5.5.5 Adiabatic Plane Rotation of Arbitrary Nutation Angle
282(2)
5.6 Multidimensional RF Pulses
284(1)
5.7 Spectral-Spatial RF Pulses
284(2)
Exercises
286(2)
References
288(5)
6 Single Volume Localization and Water Suppression
293(1)
6.1 Introduction
293(1)
6.2 Single-volume Localization
294(1)
6.2.1 Image Selected In Vivo Spectroscopy (ISIS)
295(2)
6.2.2 Chemical Shift Displacement
297(4)
6.2.3 Coherence Selection
301(1)
6.2.3.1 Phase Cycling
302(1)
6.2.3.2 Magnetic Field Gradients
302(2)
6.2.4 STimulated Echo Acquisition Mode (STEAM)
304(3)
6.2.5 Point Resolved Spectroscopy (PRESS)
307(2)
6.2.6 Signal Dephasing with Magnetic Field Gradients
309(5)
6.2.7 Localization by Adiabatic Selective Refocusing (LASER)
314(3)
6.3 Water Suppression
317(1)
6.3.1 Binomial and Related Pulse Sequences
318(2)
6.3.2 Frequency-Selective Excitation
321(2)
6.3.3 Frequency-Selective Refocusing
323(1)
6.3.4 Relaxation-Based Methods
323(3)
6.3.5 Non-water-suppressed NMR Spectroscopy
326(1)
Exercises
327(3)
References
330(5)
7 Spectroscopic Imaging and Multivolume Localization
335(1)
7.1 Introduction
335(1)
7.2 Principles of MRSI
335(3)
7.3 /c-Space Description of MRSI
338(1)
7.4 Spatial Resolution in MRSI
339(2)
7.5 Temporal Resolution in MRSI
341(2)
7.5.1 Conventional Methods
343(1)
7.5.1.1 Circular and Spherical/(r-Space Sampling
343(1)
7.5.1.2 /c-Space Apodization During Acquisition
343(1)
7.5.1.3 Zoom MRSI
345(1)
7.5.2 Methods Based on Fast MRI
346(1)
7.5.2.1 Echo-planar Spectroscopic Imaging (EPSI)
346(3)
7.5.2.2 Spiral MRSI
349(1)
7.5.2.3 Parallel MRSI
350(1)
7.5.3 Methods Based on Prior Knowledge
351(2)
7.6 Lipid Suppression
353(7)
7.6.1 Relaxation-based Methods
353(2)
7.6.2 Inner Volume Selection and Volume Prelocalization
355(2)
7.6.3 Outer Volume Suppression (OVS)
357(3)
7.7 MR Spectroscopic Image Processing and Display
360(4)
7.8 Multivolume Localization
364(4)
7.8.1 Hadamard Localization
365(1)
7.8.2 Sequential Multivolume Localization
366(2)
Exercises
368(2)
References
370(5)
8 Spectral Editing and 2D NMR
375(1)
8.1 Introduction
375(1)
8.2 Quantitative Descriptions of NMR
375(5)
8.2.1 Density Matrix Formalism
376(1)
8.2.2 Classical Vector Model
377(1)
8.2.3 Correlated Vector Model
378(1)
8.2.4 Product Operator Formalism
379(1)
8.3 Scalar Evolution
380(4)
8.4 J-Difference Editing
384(11)
8.4.1 Principle
384(1)
8.4.2 Practical Considerations
385(4)
8.4.3 GABA, 2HG, and Lactate
389(6)
8.5 Multiple Quantum Coherence Editing
395(5)
8.6 Spectral Editing Alternatives
400(2)
8.7 Heteronuclear Spectral Editing
402(8)
8.7.1 Proton-observed, Carbon-edited (POCE) MRS
402(5)
8.7.2 Polarization Transfer - INEPT and DEPT
407(3)
8.8 Broadband Decoupling
410(4)
8.9 Sensitivity
414(1)
8.10 Two-dimensional NMR Spectroscopy
415(14)
8.10.1 Correlation Spectroscopy (COSY)
416(6)
8.10.2 J-resolved Spectroscopy (JRES)
422(2)
8.10.3 In vivo 2D NMR Methods
424(5)
Exercises
429(3)
References
432(7)
9 Spectral Quantification
439(1)
9.1 Introduction
439(1)
9.2 Data Acquisition
440(3)
9.2.1 Magnetic Field Homogeneity
440(2)
9.2.2 Spatial Localization
442(1)
9.2.3 Water Suppression
442(1)
9.2.4 Sensitivity
442(1)
9.3 Data Preprocessing
443(4)
9.3.1 Phased-array Coil Combination
443(1)
9.3.2 Phasing and Frequency Alignment
444(1)
9.3.3 Line-shape Correction
444(1)
9.3.4 Removal of Residual Water
444(2)
9.3.5 Baseline Correction
446(1)
9.4 Data Quantification
447(1)
9.4.1 Time-and Frequency-domain Parameters
447(3)
9.4.2 Prior Knowledge
450(3)
9.4.3 Spectral Fitting Algorithms
453(4)
9.4.4 Error Estimation
457(3)
9.5 Data Calibration
460(1)
9.5.1 Partial Saturation
461(1)
9.5.2 Nuclear Overhauser Effects
462(1)
9.5.3 Transverse Relaxation
462(1)
9.5.4 Diffusion
462(1)
9.5.5 Scalar Coupling
462(1)
9.5.6 Localization
463(1)
9.5.7 Frequency-dependent Amplitude- and Phase Distortions
463(1)
9.5.8 NMR Visibility
463(1)
9.5.9 Internal Concentration Reference
464(2)
9.5.10 External Concentration Reference
466(1)
9.5.11 Phantom Replacement Concentration Reference
466(1)
Exercises
467(2)
References
469(4)
10 Hardware
473(1)
10.1 Introduction
473(1)
10.2 Magnets
473(5)
10.3 Magnetic Field Homogeneity
478(1)
10.3.1 Origins of Magnetic Field Inhomogeneity
478(4)
10.3.2 Effects of Magnetic Field Inhomogeneity
482(3)
10.3.3 Principles of Spherical Harmonic Shimming
485(4)
10.3.4 Practical Spherical Harmonic Shimming
489(2)
10.3.5 Alternative Shimming Strategies
491(2)
10.4 Magnetic Field Gradients
493(5)
10.4.1 Eddy Currents
498(1)
10.4.2 Preemphasis
499(4)
10.4.3 Active Shielding
503(1)
10.5 Radiofrequency (RF) Coils
503(1)
10.5.1 Electrical Circuit Analysis
503(6)
10.5.2 RF Coil Performance
509(1)
10.5.3 Spatial Field Properties
510(2)
10.5.3.1 Longitudinal Magnetic Fields
512(1)
10.5.3.2 Transverse Magnetic Fields
513(1)
10.5.4 Principle of Reciprocity
514(1)
10.5.4.1 Electromagnetic Wave Propagation
515(2)
10.5.5 Parallel Transmission
517(2)
10.5.6 RF Power and Specific Absorption Rate (SAR)
519(1)
10.5.7 Specialized RF Coils
520(1)
10.5.7.1 Combined Transmit and Receive RF Coils
521(1)
10.5.7.2 Phased-Array Coils
522(1)
10.5.7.3 1H-[ 13C] and BC-[ 1H] RF Coils
522(4)
10.5.7.4 Cooled and Superconducting RF Coils
525(1)
10.6 Complete MR System
526(1)
10.6.1 RF Transmission
526(1)
10.6.2 Signal Reception
527(1)
10.6.3 Quadrature Detection
528(1)
10.6.4 Dynamic Range
529(1)
10.6.5 Gradient and Shim Systems
530(2)
Exercises
532(2)
References
534(8)
Appendix A
542(11)
A.1 Matrix Calculations
542(1)
A.2 Trigonometric Equations
543(1)
A.3 Fourier Transformation
543(3)
A.3.1 Introduction
543(1)
A.3.2 Properties
544(1)
A.3.2.1 Linearity
544(1)
A.3.2.2 Time and Frequency Shifting
544(1)
A.3.2.3 Scaling
545(1)
A.3.2.4 Convolution
545(1)
A.3.3 Discrete Fourier Transformation
545(1)
A.4 Product Operator Formalism
546(4)
A.4.1 Cartesian Product Operators
546(2)
A.4.2 Shift (Lowering and Raising) Operators
548(2)
References
550(2)
Further Reading
552(1)
Index 553
Robin A. de Graaf, PhD, is Professor at Yale University, School of Medicine, Department of Radiology and Biomedical Imaging, USA.