Muutke küpsiste eelistusi

E-raamat: VLSI and Hardware Implementations using Modern Machine Learning Methods

Edited by (Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jaipur, India), Edited by , Edited by (Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jaipur, India.)
  • Formaat: 328 pages
  • Ilmumisaeg: 30-Dec-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000523812
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 328 pages
  • Ilmumisaeg: 30-Dec-2021
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000523812

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book aims to provide the latest machine learning based methods, algorithms, architectures, and frameworks designed for VLSI design with focus on digital, analog and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas.

Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques.

Features:

  • Provides the details of state-of-the-art machine learning methods used in VLSI design
  • Discusses hardware implementation and device modeling pertaining to machine learning algorithms
  • Explores machine learning for various VLSI architectures and reconfigurable computing
  • Illustrates the latest techniques for device size and feature optimization
  • Highlights the latest case studies and reviews of the methods used for hardware implementation

This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.

1. VLSI and Hardware Implementation Using Machine Learning Methods: A Systematic Literature Review.
2. Machine Learning for Testing of VLSI Circuit.
3. Online Checkers to Detect Hardware Trojans in AES Hardware Accelerators.
4. Machine Learning Methods for Hardware Security.
5. Application Driven Fault Identification in NoC Designs.
6. Online Test Derived from Binary Neural Network for Critical Autonomous Automotive Hardware.
7. Applications of Machine Learning in VLSI Design.
8. An Overview of High-Performance Computing Techniques Applied to Image Processing.
9. Machine Learning Algorithms for Semiconductor Device Modeling.
10. Securing IoT-Based Microservices Using Artificial Intelligence.
11. Applications of the Approximate Computing on ML Architecture.
12. Hardware Realization of Reinforcement Learning Algorithms for Edge Devices.
13. Deep Learning Techniques for Side-Channel Analysis.
14. Machine Learning in Hardware Security of IoT Nodes.
15. Integrated Photonics for Artificial Intelligence Applications.