Muutke küpsiste eelistusi

E-raamat: Walk Through Combinatorics, A: An Introduction To Enumeration And Graph Theory (Fourth Edition)

(Univ Of Florida, Usa)
  • Formaat: 616 pages
  • Ilmumisaeg: 15-Sep-2016
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813148864
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 58,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 616 pages
  • Ilmumisaeg: 15-Sep-2016
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813148864
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first three editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.New to this edition are the Quick Check exercises at the end of each section. In all, the new edition contains about 240 new exercises. Extra examples were added to some sections where readers asked for them.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs, enumeration under group action, generating functions of labeled and unlabeled structures and algorithms and complexity.The book encourages students to learn more combinatorics, provides them with a not only useful but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to sales@wspc.com.The previous edition of this textbook has been adopted at various schools including UCLA, MIT, University of Michigan, and Swarthmore College. It was also translated into Korean.
Foreword vii
Preface ix
Acknowledgments xi
I Basic Methods
1 Seven Is More Than Six. The Pigeon-Hole Principle
1(22)
1.1 The Basic Pigeon-Hole Principle
1(3)
Quick Check
3(1)
1.2 The Generalized Pigeon-Hole Principle
4(19)
Quick Chek
10(1)
Exercises
10(2)
Supplementary Exercises
12(2)
Solutions to Exercises
14(9)
2 One Step at a Time. The Method of Mathematical Induction
23(20)
2.1 Weak Induction
23(6)
Quick Check
28(1)
2.2 Strong Induction
29(14)
Quick Check
30(1)
Exercises
31(2)
Supplementary Exercises
33(2)
Solutions to Exercises
35(8)
II Enumerative Combinatorics
3 There Are A Lot Of Them. Elementary Counting Problems
43(30)
3.1 Permutations
43(3)
Quick Check
46(1)
3.2 Strings over a Finite Alphabet
46(4)
Quick Check
50(1)
3.3 Choice Problems
50(23)
Quick Check
53(1)
Exercises
54(4)
Supplementary Exercises
58(2)
Solutions to Exercises
60(13)
4 No Matter How You Slice It. The Binomial Theorem and Related Identities
73(28)
4.1 The Binomial Theorem
73(5)
Quick Check
78(1)
4.2 The Multinomial Theorem
78(3)
Quick Check
81(1)
4.3 When the Exponent Is Not a Positive Integer
81(20)
Quick Check
83(1)
Exercises
83(4)
Supplementary Exercises
87(3)
Solutions to Exercises
90(11)
5 Divide and Conquer. Partitions
101(22)
5.1 Compositions
101(2)
Quick Check
103(1)
5.2 Set Partitions
103(3)
Quick Check
106(1)
5.3 Integer Partitions
106(17)
Quick Check
112(1)
Exercises
113(2)
Supplementary Exercises
115(2)
Solutions to Exercises
117(6)
6 Not So Vicious Cycles. Cycles in Permutations
123(24)
6.1 Cycles in Permutations
124(6)
Quick Check
130(1)
6.2 Permutations with Restricted Cycle Structure
130(17)
Quick Check
134(1)
Exercises
135(2)
Supplementary Exercises
137(3)
Solutions to Exercises
140(7)
7 You Shall Not Overcount. The Sieve
147(16)
7.1 Enumerating The Elements of Intersecting Sets
147(3)
Quick Check
150(1)
7.2 Applications of the Sieve Formula
150(13)
Quick Check
154(1)
Exercises
155(1)
Supplementary Exercises
156(1)
Solutions to Exercises
157(6)
8 A Function Is Worth Many Numbers. Generating Functions
163(42)
8.1 Ordinary Generating Functions
163(17)
8.1.1 Recurrence Relations and Generating Functions
163(6)
8.1.2 Products of Generating Functions
169(7)
8.1.3 Compositions of Generating Functions
176(4)
Quick Check
180(1)
8.2 Exponential Generating Functions
180(25)
8.2.1 Recurrence Relations and Exponential Generating Functions
180(2)
8.2.2 Products of Exponential Generating Functions
182(3)
8.2.3 Compositions of Exponential Generating Functions
185(4)
Quick Check
189(1)
Exercises
189(2)
Supplementary Exercises
191(4)
Solutions to Exercises
195(10)
III Graph Theory
9 Dots and Lines. The Origins of Graph Theory
205(28)
9.1 The Notion of Graphs. Eulerian Trails
205(5)
Quick Check
210(1)
9.2 Hamiltonian Cycles
210(3)
Quick Check
212(1)
9.3 Directed Graphs
213(3)
Quick Check
215(1)
9.4 The Notion of Isomorphisms
216(17)
Quick Check
218(1)
Exercises
219(3)
Supplementary Exercises
222(3)
Solutions to Exercises
225(8)
10 Staying Connected. Trees
233(36)
10.1 Minimally Connected Graphs
233(6)
Quick Check
239(1)
10.2 Minimum-weight Spanning Trees. Kruskal's Greedy Algorithm
239(5)
Quick Check
243(1)
10.3 Graphs and Matrices
244(3)
10.3.1 Adjacency Matrices of Graphs
244(3)
Quick Check
247(1)
10.4 The Number of Spanning Trees of a Graph
247(22)
Quick Check
253(1)
Exercises
253(3)
Supplementary Exercises
256(2)
Solutions to Exercises
258(11)
11 Finding A Good Match. Coloring and Matching
269(32)
11.1 Introduction
269(2)
Quick Check
271(1)
11.2 Bipartite Graphs
271(6)
Quick Check
276(1)
11.3 Matchings in Bipartite Graphs
277(8)
11.3.1 Bipartite Graphs with Perfect Matchings
279(4)
11.3.2 Stable Matchings in Bipartite Graphs
283(2)
Quick Check
285(1)
11.4 More Than Two Colors
285(2)
Quick Check
287(1)
11.5 Matchings in Graphs That Are Not Bipartite
287(14)
Quick Check
291(1)
Exercises
291(2)
Supplementary Exercises
293(2)
Solutions to Exercises
295(6)
12 Do Not Cross. Planar Graphs
301(20)
12.1 Euler's Theorem for Planar Graphs
301(3)
Quick Check
304(1)
12.2 Polyhedra
304(7)
Quick Check
311(1)
12.3 Coloring Maps
311(10)
Quick Check
313(1)
Exercises
314(1)
Supplementary Exercises
315(2)
Solutions to Exercises
317(4)
IV Horizons
13 Does It Clique? Ramsey Theory
321(22)
13.1 Ramsey Theory for Finite Graphs
321(6)
Quick Check
327(1)
13.2 Generalizations of the Ramsey Theorem
327(4)
Quick Check
330(1)
13.3 Ramsey Theory in Geometry
331(12)
Quick Check
333(1)
Exercises
334(1)
Supplementary Exercises
335(2)
Solutions to Exercises
337(6)
14 So Hard To Avoid. Subsequence Conditions on Permutations
343(38)
14.1 Pattern Avoidance
343(10)
Quick Check
352(1)
14.2 Stack Sortable Permutations
353(28)
Quick Check
303(1)
Exercises
304(62)
Supplementary Exercises
366(2)
Solutions to Exercises
368(13)
15 Who Knows What It Looks Like, But It Exists. The Probabilistic Method
381(36)
15.1 The Notion of Probability
381(4)
Quick Check
384(1)
15.2 Non-constructive Proofs
385(2)
Quick Check
387(1)
15.3 Independent Events
387(8)
15.3.1 The Notion of Independence and Bayes' Theorem
387(5)
15.3.2 More Than Two Events
392(2)
Quick Check
394(1)
15.4 Expected Values
395(22)
15.4.1 Linearity of Expectation
396(3)
15.4.2 Existence Proofs Using Expectation
399(2)
15.4.3 Conditional Expectation
401(2)
Quick Check
403(1)
Exercises
403(3)
Supplementary Exercises
406(4)
Solutions to Exercises
410(7)
16 At Least Some Order. Partial Orders and Lattices
417(34)
16.1 The Notion of Partially Ordered Set
417(6)
Quick Check
423(1)
16.2 The Mobius Function of a Poset
423(8)
Quick Check
431(1)
16.3 Lattices
431(20)
Quick Check
438(1)
Exercises
438(2)
Supplementary Exercises
440(3)
Solutions to Exercises
443(8)
17 As Evenly As Possible. Block Designs and Error Correcting Codes
451(36)
17.1 Introduction
451(5)
17.1.1 Moto-cross Races
451(2)
17.1.2 Incompatible Computer Programs
453(2)
Quick Check
455(1)
17.2 Balanced Incomplete Block Designs
456(2)
Quick Check
458(1)
17.3 New Designs From Old
458(5)
Quick Check
463(1)
17.4 Existence of Certain BIBDs
463(3)
17.4.1 A Residual Design of a Projective Plane
465(1)
Quick Check
466(1)
17.5 Codes and Designs
466(21)
17.5.1 Coding Theory
466(1)
17.5.2 Error Correcting Codes
467(1)
17.5.3 Formal Definitions About Codes
468(4)
17.5.4 Perfect Codes
472(3)
Quick Check
475(1)
Exercises
476(2)
Supplementary Exercises
478(1)
Solutions to Exercises
479(8)
18 Are They Really Different? Counting Unlabeled Structures
487(36)
18.1 Enumeration Under Group Action
487(11)
18.1.1 Introduction
487(1)
18.1.2 Groups
487(3)
18.1.3 Permutation Groups
490(7)
Quick Check
497(1)
18.2 Counting Unlabeled Trees
498(25)
18.2.1 Counting Rooted Non-plane 1-2 Trees
498(3)
18.2.2 Counting Rooted Non-plane Trees
501(2)
18.2.3 Counting Unrooted Trees
503(6)
Quick Check
509(1)
Exercises
510(3)
Supplementary Exercises
513(2)
Solutions to Exercises
515(8)
19 The Sooner The Better. Combinatorial Algorithms
523(30)
19.1 In Lieu of Definitions
523(3)
19.1.1 The Halting Problem
524(1)
Quick Check
525(1)
19.2 Sorting Algorithms
526(8)
19.2.1 BubbleSort
526(3)
19.2.2 MergeSort
529(3)
19.2.3 Comparing the Growth of Functions
532(2)
Quick Check
534(1)
19.3 Algorithms on Graphs
534(19)
19.3.1 Minimum-cost Spanning Trees, Revisited
534(3)
19.3.2 Finding the Shortest Path
537(5)
Quick Check
542(1)
Exercises
543(3)
Supplementary Exercises
546(1)
Solutions to Exercises
547(6)
20 Does Many Mean More Than One? Computational Complexity
553(30)
20.1 Turing Machines
553(3)
Quick Check
556(1)
20.2 Complexity Classes
556(27)
20.2.1 The Class P
556(2)
20.2.2 The Class NP
558(7)
20.2.3 NP-complete Problems
565(6)
20.2.4 Other Complexity Classes
571(3)
Quick Check
574(1)
Exercises
574(2)
Supplementary Exercises
576(1)
Solutions to Exercises
577(6)
Bibliography 583(4)
Index 587