Foreword |
|
vii | |
Preface |
|
ix | |
Acknowledgments |
|
xi | |
|
|
|
1 Seven Is More Than Six. The Pigeon-Hole Principle |
|
|
1 | (22) |
|
1.1 The Basic Pigeon-Hole Principle |
|
|
1 | (3) |
|
|
3 | (1) |
|
1.2 The Generalized Pigeon-Hole Principle |
|
|
4 | (19) |
|
|
10 | (1) |
|
|
10 | (2) |
|
|
12 | (2) |
|
|
14 | (9) |
|
2 One Step at a Time. The Method of Mathematical Induction |
|
|
23 | (20) |
|
|
23 | (6) |
|
|
28 | (1) |
|
|
29 | (14) |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
33 | (2) |
|
|
35 | (8) |
|
II Enumerative Combinatorics |
|
|
|
3 There Are A Lot Of Them. Elementary Counting Problems |
|
|
43 | (30) |
|
|
43 | (3) |
|
|
46 | (1) |
|
3.2 Strings over a Finite Alphabet |
|
|
46 | (4) |
|
|
50 | (1) |
|
|
50 | (23) |
|
|
53 | (1) |
|
|
54 | (4) |
|
|
58 | (2) |
|
|
60 | (13) |
|
4 No Matter How You Slice It. The Binomial Theorem and Related Identities |
|
|
73 | (28) |
|
|
73 | (5) |
|
|
78 | (1) |
|
4.2 The Multinomial Theorem |
|
|
78 | (3) |
|
|
81 | (1) |
|
4.3 When the Exponent Is Not a Positive Integer |
|
|
81 | (20) |
|
|
83 | (1) |
|
|
83 | (4) |
|
|
87 | (3) |
|
|
90 | (11) |
|
5 Divide and Conquer. Partitions |
|
|
101 | (22) |
|
|
101 | (2) |
|
|
103 | (1) |
|
|
103 | (3) |
|
|
106 | (1) |
|
|
106 | (17) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
115 | (2) |
|
|
117 | (6) |
|
6 Not So Vicious Cycles. Cycles in Permutations |
|
|
123 | (24) |
|
6.1 Cycles in Permutations |
|
|
124 | (6) |
|
|
130 | (1) |
|
6.2 Permutations with Restricted Cycle Structure |
|
|
130 | (17) |
|
|
134 | (1) |
|
|
135 | (2) |
|
|
137 | (3) |
|
|
140 | (7) |
|
7 You Shall Not Overcount. The Sieve |
|
|
147 | (16) |
|
7.1 Enumerating The Elements of Intersecting Sets |
|
|
147 | (3) |
|
|
150 | (1) |
|
7.2 Applications of the Sieve Formula |
|
|
150 | (13) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
157 | (6) |
|
8 A Function Is Worth Many Numbers. Generating Functions |
|
|
163 | (42) |
|
8.1 Ordinary Generating Functions |
|
|
163 | (17) |
|
8.1.1 Recurrence Relations and Generating Functions |
|
|
163 | (6) |
|
8.1.2 Products of Generating Functions |
|
|
169 | (7) |
|
8.1.3 Compositions of Generating Functions |
|
|
176 | (4) |
|
|
180 | (1) |
|
8.2 Exponential Generating Functions |
|
|
180 | (25) |
|
8.2.1 Recurrence Relations and Exponential Generating Functions |
|
|
180 | (2) |
|
8.2.2 Products of Exponential Generating Functions |
|
|
182 | (3) |
|
8.2.3 Compositions of Exponential Generating Functions |
|
|
185 | (4) |
|
|
189 | (1) |
|
|
189 | (2) |
|
|
191 | (4) |
|
|
195 | (10) |
|
|
|
9 Dots and Lines. The Origins of Graph Theory |
|
|
205 | (28) |
|
9.1 The Notion of Graphs. Eulerian Trails |
|
|
205 | (5) |
|
|
210 | (1) |
|
|
210 | (3) |
|
|
212 | (1) |
|
|
213 | (3) |
|
|
215 | (1) |
|
9.4 The Notion of Isomorphisms |
|
|
216 | (17) |
|
|
218 | (1) |
|
|
219 | (3) |
|
|
222 | (3) |
|
|
225 | (8) |
|
10 Staying Connected. Trees |
|
|
233 | (36) |
|
10.1 Minimally Connected Graphs |
|
|
233 | (6) |
|
|
239 | (1) |
|
10.2 Minimum-weight Spanning Trees. Kruskal's Greedy Algorithm |
|
|
239 | (5) |
|
|
243 | (1) |
|
|
244 | (3) |
|
10.3.1 Adjacency Matrices of Graphs |
|
|
244 | (3) |
|
|
247 | (1) |
|
10.4 The Number of Spanning Trees of a Graph |
|
|
247 | (22) |
|
|
253 | (1) |
|
|
253 | (3) |
|
|
256 | (2) |
|
|
258 | (11) |
|
11 Finding A Good Match. Coloring and Matching |
|
|
269 | (32) |
|
|
269 | (2) |
|
|
271 | (1) |
|
|
271 | (6) |
|
|
276 | (1) |
|
11.3 Matchings in Bipartite Graphs |
|
|
277 | (8) |
|
11.3.1 Bipartite Graphs with Perfect Matchings |
|
|
279 | (4) |
|
11.3.2 Stable Matchings in Bipartite Graphs |
|
|
283 | (2) |
|
|
285 | (1) |
|
11.4 More Than Two Colors |
|
|
285 | (2) |
|
|
287 | (1) |
|
11.5 Matchings in Graphs That Are Not Bipartite |
|
|
287 | (14) |
|
|
291 | (1) |
|
|
291 | (2) |
|
|
293 | (2) |
|
|
295 | (6) |
|
12 Do Not Cross. Planar Graphs |
|
|
301 | (20) |
|
12.1 Euler's Theorem for Planar Graphs |
|
|
301 | (3) |
|
|
304 | (1) |
|
|
304 | (7) |
|
|
311 | (1) |
|
|
311 | (10) |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
315 | (2) |
|
|
317 | (4) |
|
|
|
13 Does It Clique? Ramsey Theory |
|
|
321 | (22) |
|
13.1 Ramsey Theory for Finite Graphs |
|
|
321 | (6) |
|
|
327 | (1) |
|
13.2 Generalizations of the Ramsey Theorem |
|
|
327 | (4) |
|
|
330 | (1) |
|
13.3 Ramsey Theory in Geometry |
|
|
331 | (12) |
|
|
333 | (1) |
|
|
334 | (1) |
|
|
335 | (2) |
|
|
337 | (6) |
|
14 So Hard To Avoid. Subsequence Conditions on Permutations |
|
|
343 | (38) |
|
|
343 | (10) |
|
|
352 | (1) |
|
14.2 Stack Sortable Permutations |
|
|
353 | (28) |
|
|
303 | (1) |
|
|
304 | (62) |
|
|
366 | (2) |
|
|
368 | (13) |
|
15 Who Knows What It Looks Like, But It Exists. The Probabilistic Method |
|
|
381 | (36) |
|
15.1 The Notion of Probability |
|
|
381 | (4) |
|
|
384 | (1) |
|
15.2 Non-constructive Proofs |
|
|
385 | (2) |
|
|
387 | (1) |
|
|
387 | (8) |
|
15.3.1 The Notion of Independence and Bayes' Theorem |
|
|
387 | (5) |
|
15.3.2 More Than Two Events |
|
|
392 | (2) |
|
|
394 | (1) |
|
|
395 | (22) |
|
15.4.1 Linearity of Expectation |
|
|
396 | (3) |
|
15.4.2 Existence Proofs Using Expectation |
|
|
399 | (2) |
|
15.4.3 Conditional Expectation |
|
|
401 | (2) |
|
|
403 | (1) |
|
|
403 | (3) |
|
|
406 | (4) |
|
|
410 | (7) |
|
16 At Least Some Order. Partial Orders and Lattices |
|
|
417 | (34) |
|
16.1 The Notion of Partially Ordered Set |
|
|
417 | (6) |
|
|
423 | (1) |
|
16.2 The Mobius Function of a Poset |
|
|
423 | (8) |
|
|
431 | (1) |
|
|
431 | (20) |
|
|
438 | (1) |
|
|
438 | (2) |
|
|
440 | (3) |
|
|
443 | (8) |
|
17 As Evenly As Possible. Block Designs and Error Correcting Codes |
|
|
451 | (36) |
|
|
451 | (5) |
|
|
451 | (2) |
|
17.1.2 Incompatible Computer Programs |
|
|
453 | (2) |
|
|
455 | (1) |
|
17.2 Balanced Incomplete Block Designs |
|
|
456 | (2) |
|
|
458 | (1) |
|
17.3 New Designs From Old |
|
|
458 | (5) |
|
|
463 | (1) |
|
17.4 Existence of Certain BIBDs |
|
|
463 | (3) |
|
17.4.1 A Residual Design of a Projective Plane |
|
|
465 | (1) |
|
|
466 | (1) |
|
|
466 | (21) |
|
|
466 | (1) |
|
17.5.2 Error Correcting Codes |
|
|
467 | (1) |
|
17.5.3 Formal Definitions About Codes |
|
|
468 | (4) |
|
|
472 | (3) |
|
|
475 | (1) |
|
|
476 | (2) |
|
|
478 | (1) |
|
|
479 | (8) |
|
18 Are They Really Different? Counting Unlabeled Structures |
|
|
487 | (36) |
|
18.1 Enumeration Under Group Action |
|
|
487 | (11) |
|
|
487 | (1) |
|
|
487 | (3) |
|
18.1.3 Permutation Groups |
|
|
490 | (7) |
|
|
497 | (1) |
|
18.2 Counting Unlabeled Trees |
|
|
498 | (25) |
|
18.2.1 Counting Rooted Non-plane 1-2 Trees |
|
|
498 | (3) |
|
18.2.2 Counting Rooted Non-plane Trees |
|
|
501 | (2) |
|
18.2.3 Counting Unrooted Trees |
|
|
503 | (6) |
|
|
509 | (1) |
|
|
510 | (3) |
|
|
513 | (2) |
|
|
515 | (8) |
|
19 The Sooner The Better. Combinatorial Algorithms |
|
|
523 | (30) |
|
19.1 In Lieu of Definitions |
|
|
523 | (3) |
|
19.1.1 The Halting Problem |
|
|
524 | (1) |
|
|
525 | (1) |
|
|
526 | (8) |
|
|
526 | (3) |
|
|
529 | (3) |
|
19.2.3 Comparing the Growth of Functions |
|
|
532 | (2) |
|
|
534 | (1) |
|
19.3 Algorithms on Graphs |
|
|
534 | (19) |
|
19.3.1 Minimum-cost Spanning Trees, Revisited |
|
|
534 | (3) |
|
19.3.2 Finding the Shortest Path |
|
|
537 | (5) |
|
|
542 | (1) |
|
|
543 | (3) |
|
|
546 | (1) |
|
|
547 | (6) |
|
20 Does Many Mean More Than One? Computational Complexity |
|
|
553 | (30) |
|
|
553 | (3) |
|
|
556 | (1) |
|
|
556 | (27) |
|
|
556 | (2) |
|
|
558 | (7) |
|
20.2.3 NP-complete Problems |
|
|
565 | (6) |
|
20.2.4 Other Complexity Classes |
|
|
571 | (3) |
|
|
574 | (1) |
|
|
574 | (2) |
|
|
576 | (1) |
|
|
577 | (6) |
Bibliography |
|
583 | (4) |
Index |
|
587 | |