Muutke küpsiste eelistusi

E-raamat: Waste-to-Energy Technologies and Global Applications

(Vice Chair Global Waste-to-Energy Research & Technology Council; Consulting Engineer, Athens, Greece)
  • Formaat: 266 pages
  • Ilmumisaeg: 15-Aug-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351977920
  • Formaat - PDF+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 266 pages
  • Ilmumisaeg: 15-Aug-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351977920

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Through Waste-to-Energy (WtE) technology, plants use waste as a renewable fuel to co-produce electricity, heating, and cooling for urban utilization. This professional book presents the latest developments in WtE technologies and their global applications. The first part of the book covers thermal treatment technologies, including combustion, novel gasification, plasma gasification, and pyrolysis. It then examines 35 real-world WtE case studies from around the world, analyzing technical information behind planning, execution, goals, and national strategies. Results through the years show the benefits of the technology through the life cycle of the products. The book also examines financial and environmental aspects.

Arvustused

"The mix of technical data, legislation issues, technological know-how and environmental aspects with existing WtE Plants is unique and was not performed till now. This book gives an excellent overview about the state-of-the-art of WtE Plants around the world, including facts and numbers which are often difficult to find because not collected in one single book. This lack of reliable, existing technical data well collected and explained is now closed with this excellent book." Sergio Escudero, Hitachi Zosen Inova AG, Zürich, Switzerland

"The different case studies shown in this book are a very good introduction of the variety of national and local situations. They lead to different answers to this worldwide problem of municipal waste treatment in the frame of circular economy and energy transition." Christophe CordHomme, CNIM Group, Paris, France

"a comprehensive overview on relevant aspects around WtE and could, if the content keeps what is announced in the overview, be a useful tool for all those interested in sustainable waste management and the role WtE can play there." Ella Stengler, Confederation of European Waste-to-Energy Plants, Brussels, Belgium

List of Figures
xiii
Preface xix
Author xxi
Chapter 1 Introduction
1(12)
1.1 General
1(1)
1.2 Advancing Sustainable Waste Management Worldwide
1(1)
1.3 Thermal Treatment Technologies Used Globally
2(2)
1.4 Materials That Can Be Processed by Grate Combustion
4(2)
1.5 Grate Combustion and Gasification Technologies in Japan
6(1)
1.6 The EEC and the Global WTERT Council
7(1)
1.7 WTERT's Mission
8(1)
1.8 WTE's Role in Advancing Sustainable Waste Management
9(4)
Bibliography
10(3)
Chapter 2 Legislation
13(8)
2.1 Waste-to-Energy's Role in EU Energy Policy and Circular Economy
13(3)
2.2 Emission Levels in Waste-to-Energy Flue Gases
16(2)
2.3 Waste-to-Energy as an Integral Part of Sustainable Waste Management Worldwide
18(1)
2.4 Waste-to-Energy Technology as a Renewable Energy Source
18(3)
Bibliography
19(2)
Chapter 3 Waste-to-Energy Technologies
21(62)
3.1 Combustion
21(40)
3.1.1 Introduction
21(1)
3.1.2 Plant Layout
21(1)
3.1.3 Reception
21(5)
3.1.4 Combustion Chamber
26(1)
3.1.4.1 Moving Grate Combustion
26(2)
3.1.4.2 Rotary Kiln Combustion
28(1)
3.1.4.3 Fluidized Bed Combustion
29(1)
3.1.5 Boiler
30(2)
3.1.5.1 Hot Water Boiler
32(1)
3.1.5.2 Low-Pressure Steam Boiler
32(1)
3.1.5.3 High-Pressure Steam Boiler
33(3)
3.1.6 Steam Turbine: Condenser
36(1)
3.1.6.1 Steam Turbine
36(2)
3.1.6.2 Steam Condensing (Cooling)
38(3)
3.1.7 Teleheating: Electrical System
41(1)
3.1.7.1 Teleheating
41(3)
3.1.7.2 Electrical System
44(2)
3.1.8 Bottom Ash
46(2)
3.1.9 APC: Fly Ash
48(1)
3.1.9.1 Air Pollution Control
48(6)
3.1.9.2 Fly Ash
54(4)
3.1.10 Stack
58(1)
3.1.11 Results: R1
58(3)
3.2 Alternative Thermal Treatment Technologies
61(22)
3.2.1 Introduction
61(1)
3.2.2 Pyrolysis
62(2)
3.2.2.1 Applications
64(1)
3.2.3 Gasification and Plasma Gasification
64(3)
3.2.4 The JFE Direct Melting Process
67(1)
3.2.5 The Energos Grate Combustion and Gasification Process
67(2)
3.2.6 The Ebara Fluidized Bed Process
69(2)
3.2.7 The Thermoselect Gasification and Melting Process
71(1)
3.2.8 Plasma-Assisted Gasification WTE Processes
72(1)
3.2.9 Application of Various WTE Processes in Japan
73(1)
3.2.10 Technical Visit in an Alternative WTE Process Plant
74(2)
Bibliography
76(7)
Chapter 4 Waste-to-Energy in Europe
83(60)
4.1 Spain
83(7)
4.1.1 TERSA WTE Plant, Barcelona
83(2)
4.1.1.1 The Districlima District Heating System
85(1)
4.1.2 The Mataro WTE Plant (Maresme Integrated Waste Management Center)
85(2)
4.1.2.1 The Maresme Integrated Waste Management Center History
87(1)
4.1.2.2 Air Pollutant Emissions at the Stack
88(2)
4.2 Italy
90(9)
4.2.1 Turin WTE Plant
90(1)
4.2.2 Piacenza WTE Plant
91(2)
4.2.3 Brescia WTE Plant
93(1)
4.2.4 Acerra WTE Plant, Naples
94(5)
4.3 Poland
99(3)
4.3.1 Poznan WTE Plant
100(2)
4.4 Norway
102(3)
4.4.1 The Klemetsrud Plant, Oslo
102(3)
4.5 Denmark
105(2)
4.5.1 KARA/NOVEREN WTE Plant
105(1)
4.5.1.1 The Energy Tower
106(1)
4.5.1.2 Focus on Energy Optimization
107(1)
4.6 Portugal
107(5)
4.6.1 Lipor Integrated Waste Management System
107(1)
4.6.1.1 Visit to Lipor's Recycling Circuit
108(1)
4.6.1.2 Visit to Lipor's Organic Recovery Circuit
108(1)
4.6.1.3 Visit to Lipor's Energy Recovery Circuit-Maia
108(4)
4.6.2 Valorsul WTE Plant
112(1)
4.7 France
112(3)
4.7.1 Oreade-Le Havre WTE Plant
113(1)
4.7.2 Creteil WTE Plant
113(1)
4.7.2.1 Characteristics of the Plant
114(1)
4.8 Germany
115(5)
4.8.1 MVB WTE Plants and AVG Hazardous WTE Plant, Hamburg
116(1)
4.8.1.1 MVB WTE (Units 1 and 2)
116(1)
4.8.1.2 MVB Wood Residuals and Waste Wood (Biomass) Energy Recovery Plant (Unit 3)
117(2)
4.8.1.3 AVG WTE Recovery Plant for Hazardous Materials
119(1)
4.9 Austria
120(4)
4.9.1 Arnoldstein WTE Plant
120(2)
4.9.2 Spittelau WTE Plant
122(2)
4.10 Finland
124(2)
4.10.1 Vaasa Westenergy WTE Plant
124(1)
4.10.1.1 Main Suppliers and Cooperation Partners
125(1)
4.10.1.2 Combustion Process
125(1)
4.10.1.3 Residues Treatment
125(1)
4.11 United Kingdom
126(2)
4.11.1 Isle of Man WTE Plant
127(1)
4.12 Ireland
128(3)
4.12.1 Meath WTE Plant
128(3)
4.13 Belgium
131(2)
4.13.1 ISVAG WTE Plant
131(2)
4.14 Russia
133(4)
4.14.1 EVN WTE Plant
133(4)
4.15 The Netherlands
137(6)
4.15.1 Alkmaar WTE Plant
137(1)
4.15.1.1 WTE Plant in Alkmaar Delivers Heat to the AZ Football Club's Stadium
137(1)
4.15.1.2 Heating and Cooling Distribution Project in Alkmaar, Netherlands (Hvc Groep)
137(2)
Bibliography
139(4)
Chapter 5 Waste-to-Energy in the Americas
143(14)
5.1 United States of America
143(6)
5.1.1 Union County, New Jersey
143(1)
5.1.2 West Palm Beach, Florida
143(6)
5.2 Canada
149(5)
5.2.1 Durham York Energy Centre
149(5)
5.3 Brazil
154(1)
5.4 Cuba
154(3)
5.4.1 Special Conference Events in Cuba
154(1)
5.4.2 Technical Visit
155(1)
Bibliography
155(2)
Chapter 6 Waste-to-Energy in Asia
157(20)
6.1 China
157(5)
6.1.1 Suzhou Everbright State Venus Industry Demonstration Park in Suzhou City
157(2)
6.1.2 Gao-An-Tun WTE Plant in Beijing
159(1)
6.1.3 Shanghai Pucheng Thermal Power Energy Co., Ltd., Pudong Yuqiao WTE Plant
159(2)
6.1.4 Chongqing Sanfeng Covanta WTE Plant
161(1)
6.2 Azerbaijan
162(11)
6.2.1 Baku WTE
162(1)
6.2.1.1 Introduction
162(1)
6.2.1.2 The Past
163(1)
6.2.1.3 The Present
164(1)
6.2.1.4 The WTE Plant
164(1)
6.2.1.5 Waste Reception and Handling
165(1)
6.2.1.6 The MARTIN GmbH Grate
166(1)
6.2.1.7 Evacuation and Treatment of the Bottom Ash
167(1)
6.2.1.8 CNIM Heat Recovery Boiler
167(1)
6.2.1.9 Electric Power Production
168(1)
6.2.1.10 Flue Gas Cleaning System
169(1)
6.2.1.11 Dioxins and Heavy Metals Abatement
169(1)
6.2.1.12 Residue Storage
170(1)
6.2.1.13 Emissions Monitoring
170(1)
6.2.1.14 Stack
170(1)
6.2.1.15 Environmental Aspects
171(1)
6.2.1.16 Social Aspects
171(1)
6.2.1.17 Economic Aspects
171(2)
6.3 India
173(2)
6.3.1 Jabalpur WTE Plant
174(1)
6.4 Indonesia
175(2)
Bibliography
175(2)
Chapter 7 Waste-to-Energy in Africa
177(12)
7.1 Ethiopia
177(12)
7.1.1 Joint European and African Research and Innovation Agenda: Addis Ababa Meeting
177(1)
7.1.2 Joint European and African Research and Innovation Agenda: Brussels Meeting
178(1)
7.1.3 The KOSHE WTE Project at Reppi, Addis Ababa
179(8)
Bibliography
187(2)
Chapter 8 Environmental Impact of Waste-to-Energy
189(26)
Carlo Vandecasteele
Chantal Block
8.1 Air Pollution
189(9)
8.1.1 Emissions
189(1)
8.1.2 PCDD/Fs, Dioxins
190(1)
8.1.2.1 Properties and Toxicity
190(2)
8.1.2.2 Formation of PCDD/Fs during Waste Combustion
192(2)
8.1.2.3 Prevention and Abatement
194(1)
8.1.2.4 Sources and Health Effects
194(1)
8.1.3 NOx
195(1)
8.1.4 Contribution of the Emissions of WTE to Air Pollution
196(2)
8.1.5 Conclusion
198(1)
8.2 Residues
198(11)
8.2.1 Bottom Ash
198(1)
8.2.1.1 Use of Bottom Ash in or as Construction Material
199(6)
8.2.1.2 Overview of the Main Limitations
205(1)
8.2.2 Treatment Technology
206(1)
8.2.2.1 Boiler Ash and Flue Gas Cleaning Residues
206(3)
8.3 Environmental Comparison of WTE with Landfill and Recycling
209(1)
8.4 Conclusions
210(5)
Bibliography
210(5)
Chapter 9 Waste-to-Energy Investment Evaluation (WTE Tool)
215(20)
9.1 Introduction
215(1)
9.2 Financial Model
216(6)
9.2.1 Revenues
217(2)
9.2.2 Operational Expenses (OPEX)
219(2)
9.2.3 Capital Expense (CAPEX)
221(1)
9.2.4 Project Valuation
221(1)
9.3 Types of Contracts: Financing
222(3)
9.4 WTE Tool
225(10)
Bibliography
233(2)
Index 235
Dr. Efstratios Kalogirou is the co-founder and first Chair of Waste to Energy Research & Technology Council/WTERT Greece (Synergia, www.wtert.gr) and also the first Vice-Chair of Global WTERT Council, headquartered in the Earth Engineering Center of Columbia University (www.wtert.org). He is a permanent member of the ISWA Working Group on Energy Recovery (ISWA-WGER, www.iswa.org). He graduated from the Department of Chemical Engineering at Aristotle University of Thessaloniki, Greece and has a Ph.D. from the National Technical University of Athens, School of Chemical Engineering. He is an international expert on waste management, specialized in state-of-the-art waste to energy (WTE) novel technologies. His major scientific fields are energy from waste, potable water resources, and ozone sterilization technologies. He is involved in many environmental projects worldwide (especially in WTE feasibility studies, preliminary studies, etc.). He is author of many scientific and technical papers, especially in WTE, and coordinates worldwide intensive courses/seminars on advancing state-of-the-art sustainable waste management and WTE as a renewable energy source contributing to green development and carbon credits, in close cooperation with policy/decision makers, local governmental authorities, and local industry and universities.

Email : ozone.greece@gmail.com