Muutke küpsiste eelistusi

E-raamat: Water and Earthquakes

  • Formaat - EPUB+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This open access book explores the interactions between water and earthquakes, including recent concerns about induced seismicity. It further highlights that a better understanding of the response of the water system to disturbances such as earthquakes is needed to safeguard water resources, to shield underground waste repositories, and to mitigate groundwater contamination. Although the effects of earthquakes on streams and groundwater have been reported for thousands of years, this field has only blossomed into an active area of research in the last twenty years after quantitative and continuous documentation of field data became available. This volume gathers the important advances that have been made in the field over the past decade, which to date have been scattered in the form of research articles in various scientific journals.

1 Introduction
1(8)
References
5(4)
2 Groundwater Flow and Transport
9(14)
2.1 Introduction
9(3)
2.2 Pressure, Hydraulic Head and Darcy's Law
12(1)
2.3 Permeability of Layered Media
13(1)
2.4 Specific Storage and Specific Yield
14(1)
2.5 Saturated Flow
14(2)
2.5.1 Isothermal Flow
14(1)
2.5.2 Flow Through Variable Temperatures
15(1)
2.6 Unsaturated Flow
16(1)
2.7 Heat Transport
17(2)
2.8 Solute Transport
19(2)
References
21(2)
3 Hydro-Mechanical Coupling
23(38)
3.1 Introduction
23(1)
3.2 Linear Poroelasticity and Groundwater Flow
24(18)
3.2.1 Constitutive Relations for Isotropic Stress: Biot (1941)
26(1)
3.2.2 Effective Stress
27(1)
3.2.3 Related Poroelastic Constants
28(3)
3.2.4 Constitutive Relationship for Anisotropic Stress: Biot (1955)
31(2)
3.2.5 Poroelastic Constants
33(6)
3.2.6 Governing Equations for Flow in Poroelastic Media
39(1)
3.2.7 Uncoupling Stress or Strain from Fluid Flow
40(2)
3.3 Consolidation
42(4)
3.3.1 Consolidation of Sediments in Sedimentary Basin
42(1)
3.3.2 Terzaghi Theory of Consolidation
43(3)
3.4 Liquefaction
46(3)
3.5 Rock Friction and Instability
49(10)
3.5.1 Friction and Frictional Instability
50(5)
3.5.2 The Rate-and-State Equation
55(4)
References
59(2)
4 Earthquakes Influenced by Water
61(22)
4.1 Introduction
61(1)
4.2 Fluids and Rock Failure
62(2)
4.3 Earthquakes Induced by Fluid Injection
64(3)
4.4 Earthquakes Induced by Fluid Extraction
67(2)
4.5 Reservoir-Induced Seismicity
69(3)
4.6 Natural Hydrological Triggering of Earthquakes
72(1)
4.7 Earthquake Triggering of Earthquakes via Hydrological Processes
73(3)
4.8 Concluding Remarks and Outlook
76(1)
References
77(6)
5 Response to Tides, Barometric Pressure and Seismic Waves
83(72)
5.1 Introduction
83(2)
5.2 Tidal Potential
85(2)
5.3 Earth Tides
87(2)
5.4 Groundwater Response to Earth Tides
89(32)
5.4.1 Tidal Response of a Confined Aquifer
93(2)
5.4.2 Tidal Response of an Unconfined Aquifer with Flow to the Water Table
95(3)
5.4.3 An Example of Seasonal Change of Tidal Response
98(2)
5.4.4 Tidal Response of a Leaky Aquifer
100(4)
5.4.5 Numerical Simulation for the Tidal Response of a Leaky Aquifer
104(10)
5.4.6 Tidal Response of an Unconfined Aquifer with the Capillary Effect
114(7)
5.5 Groundwater Response to Barometric Changes
121(10)
5.5.1 Barometric Response of Aquifers and Barometric Efficency
121(1)
5.5.2 Analytical Solution with a Half-Space Aquitard
122(5)
5.5.3 Analytical Solution with a Finite Aquitard
127(1)
5.5.4 Numerical Solution
128(2)
5.5.5 Applications
130(1)
5.6 Estimating Hydraulic Property with Tidal and Barometric Methods
131(5)
5.7 Groundwater Oscillations in Response to Seismic Waves
136(4)
5.8 Concluding Remarks
140(3)
Appendices. Derivation of Equations
143(7)
References
150(5)
6 Groundwater Level
155(46)
6.1 Introduction
155(4)
6.2 Observations
159(6)
6.2.1 Coseismic Step-like Changes of Groundwater Level
159(3)
6.2.2 Sustained Changes
162(1)
6.2.3 Breached Confinement
162(3)
6.3 Models and Constraints
165(5)
6.3.1 Coseismic Static Strain
165(2)
6.3.2 Undrained Consolidation and Liquefaction
167(1)
6.3.3 Enhanced Permeability
167(2)
6.3.4 Shaking Water Out of Unsaturated Soil
169(1)
6.4 Constraints
170(14)
6.4.1 Constraints from Laboratory Experiments
170(1)
6.4.2 Constraints from Field Observations
171(3)
6.4.3 Constraint from Tidal Analysis
174(3)
6.4.4 Constraints from Threshold Seismic Energy
177(3)
6.4.5 Post-seismic Recession of Groundwater Level
180(4)
6.5 Pore Pressure and Permeability of Continental Faults
184(4)
6.6 Pore Pressure and Permeability on the Ocean Floor
188(5)
6.6.1 Pore Pressure and Permeability in an Accretionary Prism
188(3)
6.6.2 Pore Pressure Changes Near an Ocean Ridge
191(2)
6.7 Concluding Remarks
193(1)
Appendix: Derivation of Eq. 6.13
194(1)
References
195(6)
7 Stream Flow
201(30)
7.1 Introduction
201(2)
7.2 Observations
203(3)
7.2.1 Measurement with Flow Meter and Tape
203(1)
7.2.2 Measurement with Stream Gauges
203(3)
7.3 Proposed Mechanisms
206(9)
7.3.1 Static Elastic Strain
207(2)
7.3.2 Consolidation and Liquefaction
209(1)
7.3.3 Water Released from Mountains
210(1)
7.3.4 Water Released from Unsaturated Soils
210(2)
7.3.5 Enhanced Permeability
212(1)
7.3.6 Enhanced Vertical Permeability
212(3)
7.4 Model Constraints
215(9)
7.4.1 Constraints from Earthquake Mechanism
215(1)
7.4.2 Constraints from Recession Analysis
216(6)
7.4.3 Constraints From Multiple Stream Gauges
222(1)
7.4.4 Constraints From the Threshold Seismic Energy
222(1)
7.4.5 Constraints from Laboratory Experiment
223(1)
7.4.6 Constraints from Chemical Composition of the Excess Flow
224(1)
7.5 Streamflow Changes in Hydrothermal Areas
224(4)
7.6 Concluding Remarks
228(1)
References
228(3)
8 Groundwater Temperature
231(26)
8.1 Introduction
231(1)
8.2 Land Measurements
232(5)
8.2.1 China
232(4)
8.2.2 Japan
236(1)
8.2.3 Korea
237(1)
8.3 Basin-Wide Changes
237(4)
8.4 Springs
241(4)
8.4.1 Cold Springs
241(1)
8.4.2 Hot Springs
242(3)
8.5 Seafloor Measurements
245(5)
8.5.1 Subduction Zones
245(2)
8.5.2 Near Oceanic Ridge
247(3)
8.6 Turbulent Mixing of Well Water
250(4)
8.7 Concluding Remarks
254(1)
References
254(3)
9 Groundwater and Stream Composition
257(32)
9.1 Introduction
257(1)
9.2 Groundwater Composition
258(20)
9.2.1 Major Elements
258(9)
9.2.2 Trace Elements
267(5)
9.2.3 Stable Isotopes
272(6)
9.3 Stream Water Composition
278(5)
9.4 Need of Integrated Data to Interpret Composition Change
283(2)
9.5 Concluding Remarks
285(1)
References
285(4)
10 Geysers
289(12)
10.1 Introduction
289(5)
10.1.1 Response of Geysers to Earthquakes
290(3)
10.1.2 Response of Geysers to Other Sources of Stress
293(1)
10.2 Mechanisms
294(2)
10.2.1 How Do Geysers Work?
294(1)
10.2.2 Mechanisms for Altering Eruptions
295(1)
10.3 Conclusions About Geysers
296(1)
References
297(4)
11 Liquefaction
301(22)
11.1 Introduction
301(3)
11.2 Sediment Consolidation and Liquefaction in Cyclic Loading
304(4)
11.3 Liquefaction Beyond the Near Field
308(2)
11.4 Experiment at Wildlife Liquefaction Array, California
310(5)
11.5 Dependence of Liquefaction on Seismic Frequency
315(3)
11.6 Concluding Remarks
318(1)
References
319(4)
12 Mud Volcanoes
323(20)
12.1 Introduction
323(2)
12.2 Response of Mud Volcanoes to Earthquakes
325(2)
12.3 Insights from Triggered Eruptions of Magmatic Volcanoes
327(2)
12.4 Mechanisms
329(4)
12.4.1 Static or Dynamic Stresses?
329(1)
12.4.2 Mechanisms for Initiating Eruptions
330(3)
12.5 The Sidoarjo (Lusi) Mud Flow
333(2)
12.6 Effect of Earthquakes on Already-Erupting Mud Volcanoes
335(1)
12.7 Concluding Remarks About Mud Volcanoes
336(1)
References
337(6)
13 Hydrologic Precursors
343(26)
13.1 Introduction
343(2)
13.2 What is a Precursor?
345(1)
13.3 Identifying Precursors
346(2)
13.4 Examples
348(15)
13.4.1 China: Haicheng, 1975 and Tangshan, 1976
348(1)
13.4.2 Kobe, Japan, 1995
349(1)
13.4.3 Nankaido, Japan, 1946
349(1)
13.4.4 Oxygen Isotope Precursors to the 2016 Tottori Earthquake, Japan
350(1)
13.4.5 Kettleman Hills, California, 1985
351(1)
13.4.6 Chi-Chi, Taiwan, 1999
352(2)
13.4.7 Kamchatka
354(2)
13.4.8 Pyrenees, France, 1996
356(1)
13.4.9 Reservoir Induced Seismicity, Koyna, India
357(1)
13.4.10 Calistoga Geyser, California
357(2)
13.4.11 Iceland, 2012--2013
359(1)
13.4.12 Central Italy Seismic Sequence, 2016
359(3)
13.4.13 Precursory Changes in Spring Temperature
362(1)
13.5 Outlook
363(1)
References
364(5)
14 Epilogue
369(12)
14.1 General Framework
369(5)
14.2 Future Research
374(2)
References
376(5)
Index 381