Muutke küpsiste eelistusi

E-raamat: Wave Front Set of Solutions to Sums of Squares of Vector Fields

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 82,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Italian mathematicians Albano (U. of Rome) and Bove (U. of Bologna) explore the (micro)hypoanalyticity and the Genrey hypoellipticity of sums of squares of vector fields in terms of the Poisson-Treves stratification. Using the Fourier Bros Iagolnitzer (FBI) transform, they demonstrate hypoanalyticity for several classes of sums of squares, and show that though their method is not general, it includes almost every known hypoanalyticity result. There is no index. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)
Chapter 1 Introduction
vii
Chapter 2 The Poisson-Treves Stratification
1(6)
2.1 Analytic Stratification of an Analytic Set
1(1)
2.2 Symplectic Stratification of an Analytic Submanifold
2(2)
2.3 Poisson Stratification
4(1)
2.4 Poisson Stratification Associated to Vector Fields
5(2)
Chapter 3 Standard Forms for a System of Vector Fields
7(20)
3.1 The Symplectic Case of Depth >1
7(3)
3.2 The Symplectic Case of Depth > 1
10(6)
3.3 The Nonsymplectic Case of Depth > 1
16(3)
3.4 The Nonsymplectic Case of Depth 1
19(8)
Chapter 4 Nested Strata
27(2)
Chapter 5 Bargman Pseudodifferential Operators
29(4)
5.1 The FBI Transform
29(1)
5.2 Pseudodifferential Operators
30(1)
5.3 Some Pseudodifferential Calculus
31(2)
Chapter 6 The "A Priori" Estimate on the FBI Side
33(8)
6.1 Proof of Theorem 6.1
34(1)
6.2 First Part of the Estimate: Estimate from Below
34(1)
6.3 Second Part of the Estimate: Estimate from Above
35(6)
Chapter 7 A Single Symplectic Stratum
41(10)
7.1 Dim Σ = 2 and X1, ..., XN Quasi-homogeneous
44(2)
7.2 Codim Σ > 2
46(1)
7.3 One Symplectic Stratum of Depth 1
47(4)
Chapter 8 A Single Nonsymplectic Stratum
51(4)
8.1 The Case rank σChar(p) =2 and Xi Quasi-homogeneous
52(1)
8.2 The Transversally Elliptic Case
53(1)
8.3 A Class of Nontransversally Elliptic Operators
54(1)
Chapter 9 Microlocal Regularity in Nested Strata
55(6)
9.1 Symplectic Stratifications
55(2)
9.2 A Case of Nonsymplectic Stratification
57(3)
9.3 A Case of Two Strata
60(1)
Chapter 10 Known Cases and Examples
61(2)
10.1 The Case of codim Σ = 2
61(1)
10.2 Okaji's Theorem
62(1)
Appendix A A Bracket Lemma 63(6)
Appendix B Nonsymplectic Strata Do Not Have the Reproducing Bracket Property 69(2)
Bibliography 71(2)
Index 73