Muutke küpsiste eelistusi

E-raamat: Wavelet Analysis on the Sphere: Spheroidal Wavelets

  • Formaat: 156 pages
  • Ilmumisaeg: 20-Mar-2017
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110481242
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 156 pages
  • Ilmumisaeg: 20-Mar-2017
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110481242
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.

List of Figures
vii
List of Tables
ix
Preface xi
1 Introduction
1(2)
2 Review of orthogonal polynomials
3(28)
2.1 Introduction
3(1)
2.2 Generalities
4(4)
2.3 Orthogonal polynomials via a three-level recurrence
8(3)
2.4 Darboux--Christoffel rule
11(2)
2.5 Continued fractions
13(3)
2.6 Orthogonal polynomials via Rodrigues rule
16(1)
2.7 Orthogonal polynomials via differential equations
17(1)
2.8 Some classical orthogonal polynomials
18(12)
2.8.1 Legendre polynomials
19(3)
2.8.2 Laguerre polynomials
22(1)
2.8.3 Hermite polynomials
23(2)
2.8.4 Chebyshev polynomials
25(3)
2.8.5 Gegenbauer polynomials
28(2)
2.9 Conclusion
30(1)
3 Homogenous polynomials and spherical harmonics
31(20)
3.1 Introduction
31(1)
3.2 Spherical Laplace operator
32(2)
3.3 Some direct computations on S2
34(3)
3.4 Homogenous polynomials
37(3)
3.5 Spherical harmonics
40(4)
3.6 Fourier transform of spherical harmonics
44(3)
3.7 Zonal functions
47(3)
3.8 Conclusion
50(1)
4 Review of special functions
51(54)
4.1 Introduction
51(1)
4.2 Classical special functions
51(52)
4.2.1 Euler's Γ function
51(8)
4.2.2 Euler's beta function
59(5)
4.2.3 Theta function
64(2)
4.2.4 Riemann zeta function
66(6)
4.2.5 Hypergeometric function
72(5)
4.2.6 Legendre function
77(4)
4.2.7 Bessel function
81(8)
4.2.8 Hankel function
89(5)
4.2.9 Mathieu function
94(3)
4.2.10 Airy function
97(6)
4.3 Hankel-Bessel transform
103(2)
5 Spheroidal-type wavelets
105(20)
5.1 Introduction
105(1)
5.2 Wavelets on the real line
105(4)
5.3 Chebyshev wavelets
109(1)
5.4 Gegenbauer wavelets
110(1)
5.5 Hermite wavelets
111(1)
5.6 Laguerre wavelets
112(1)
5.7 Bessel wavelets
112(3)
5.8 Cauchy wavelets
115(1)
5.9 Spherical wavelets
116(9)
6 Some applications
125(12)
6.1 Introduction
125(1)
6.2 Wavelets for numerical solutions of PDEs
125(4)
6.3 Wavelets for integrodifferential equations
129(2)
6.4 Wavelets in image and signal processing
131(3)
6.5 Wavelets for time-series processing
134(3)
Bibliography 137
Anouar Ben Mabrouk, Sabrine Arfaoui and Imen Rezgui, University of Monastir, Tunisia.