Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Starting with the basic notions and facts of the mathematical theory of waves illustrated by numerous examples, exercises, and methods of solving typical problems Chapters 1 & 2 show e.g. how to recognize the hyperbolicity property, find characteristics, Riemann invariants and  conservation laws for  quasilinear systems of equations, construct and analyze solutions with weak or strong discontinuities, and how to investigate equations with dispersion and to construct travelling wave solutions for models reducible to nonlinear evolution equations.





Chapter 3 deals with surface and internal waves in an incompressible fluid. The efficiency of mathematical methods is demonstrated on a hierarchy of approximate submodels generated from the Euler equations of homogeneous and non-homogeneous fluids.





The self-contained presentations of the material is complemented by 200+ problems of different level of difficulty, numerous illustrations, and bibliographical recommendations.

Arvustused

This book is a graduate level text based upon a lecture course on waves in continuous media with particular emphasis on fluid media. It is aimed at students of applied mathematics, mechanics and geophysics. Waves in a stratified fluid and stability of such waves are also discussed. A number of instructive examples and exercises are given that may be useful for the targeted audience. (Fiazud Din Zaman, zbMATH 1364.76003, 2017)

1 Hyperbolic Waves
1(42)
1.1 Hyperbolic Systems
1(3)
1.2 Propagation of Weak Discontinuities
4(3)
1.3 Motion with Strong Discontinuities
7(3)
1.4 Kinematic Waves
10(3)
1.5 Multi-dimensional Wave Fronts
13(3)
1.6 Symmetrization of Hyperbolic Systems of Conservation Laws
16(1)
1.7 Problems
16(27)
2 Dispersive Waves
43(34)
2.1 Dispersion Relation
43(3)
2.2 Multi-dimensional Wave Packets
46(3)
2.3 Group Velocity
49(2)
2.4 Stationary Phase Method
51(5)
2.5 Nonlinear Dispersion
56(4)
2.6 Problems
60(17)
3 Water Waves
77(60)
3.1 Equations of Motion
77(5)
3.2 Linear Theory of Surface Waves
82(3)
3.3 Shallow Water Theory
85(3)
3.4 Shear Flows of Shallow Water
88(2)
3.5 Nonlinear Dispersive Equations
90(4)
3.6 Stationary Surface Waves
94(3)
3.7 Waves in Two-Layer Fluids
97(6)
3.8 Waves in Stratified Fluids
103(4)
3.9 Stability of Stratified Flows
107(2)
3.10 Stationary Internal Waves
109(3)
3.11 Problems
112(25)
References 137(2)
Index 139
Sergey Gavrilyuk is professor at the Aix-Marseille III University, Marseille, France





Nikolai MAKARENKO is professor at the Lavrentyev Institute of Hydrodynamics Siberian Branch of the Russian Academy, Novosibirsk, Russia





Sergey SUKHININ is professor at the Lavrentyev Institute of Hydrodynamics Russian Academy of Sciences, Novosibirsk, Russia