Muutke küpsiste eelistusi

E-raamat: Weakly Stationary Random Fields, Invariant Subspaces and Applications

(Michigan State University, East Lansing, USA), (Indiana University-Purdue University, Fort Wayne)
  • Formaat: 192 pages
  • Ilmumisaeg: 20-Nov-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351356459
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 192 pages
  • Ilmumisaeg: 20-Nov-2017
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351356459

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The first book to examine weakly stationary random fields and their connections with invariant subspaces (an area associated with functional analysis). It reviews current literature, presents central issues and most important results within the area. For advanced Ph.D. students, researchers, especially those conducting research on Gaussian theory.

Introduction ix
1 Weakly Stationary Sequences
1(40)
1.1 Preliminaries
1(1)
1.2 Examples of Weakly Stationary Sequences
2(1)
1.3 Spectral Representation of the Covariance Function
2(1)
1.4 Examples of Spectral Measures
3(1)
1.5 Canonical Isomorphism between L2(T, Fx) and L(X)
4(1)
1.6 Spectral Representation of a Weakly Stationary Sequence
5(1)
1.7 The Shift Operator on L(X)
6(2)
1.8 Moving Averages and Densities
8(7)
1.9 Regular and Singular Sequences
15(1)
1.10 Examples of Regular and Singular Sequences
15(3)
1.11 The Wold Decomposition
18(4)
1.12 The Theory of Regular Sequences
22(1)
1.13 The Concordance Theorem
23(3)
1.14 Maximal Factors and Innovation Processes
26(4)
1.15 The Szego-Krein-Kolmogorov Theorem
30(9)
1.16 Remarks and Related Literature
39(2)
2 Weakly Stationary Random Fields
41(68)
2.1 Preliminaries
41(3)
2.2 Examples
44(4)
2.2.1 Random Field with Discrete Spectral Measure
45(1)
2.2.2 Product Random Field
45(1)
2.2.3 White Noise Random Field
45(1)
2.2.4 Moving Average Random Field
45(3)
2.3 Regularity and Singularity
48(1)
2.4 Examples
49(2)
2.4.1 Horizontally and Vertically Singular
49(1)
2.4.2 Horizontally Regular and Vertically Singular
49(1)
2.4.3 Horizontally and Vertically Regular
50(1)
2.5 Horizontal and Vertical Wold Decomposition
51(4)
2.6 Regularity and the Spectral Measure
55(5)
2.7 Spectral Measures and Spectral-type Wold Decompositions
60(10)
2.8 The Fourfold Wold Decomposition
70(8)
2.9 Quarter-plane Moving Average Representations
78(6)
2.10 Helson-Lowdenslager Theory
84(13)
2.11 Semigroup Moving Average Representations
97(4)
2.12 Wold-Type Decompositions
101(5)
2.13 Remarks and Related Literature
106(3)
3 Invariant Subspaces
109(26)
3.1 The Halmos Decomposition
109(4)
3.2 Invariant Subspaces of L2(T)
113(2)
3.3 Invariant Subspaces of H2(T)
115(1)
3.4 The Halmos Fourfold Decomposition
115(9)
3.5 The Doubly Commuting Condition
124(2)
3.6 Invariant Subspaces of L2(T2)
126(6)
3.7 Invariant Subspaces of H2(T2)
132(1)
3.8 Remarks and Related Literature
133(2)
4 Applications and Generalizations
135(36)
4.1 Texture Identification
135(13)
4.2 Invariant Subspaces of LP(T)
148(3)
4.3 Harmonizable SαS Sequences
151(7)
4.4 Invariant Subspaces of LP(T2)
158(5)
4.5 Harmonizable SαS Fields
163(3)
4.6 Proper MA Representations and Outer Functions
166(3)
4.7 Remarks and Related Literature
169(2)
A Background Material
171(6)
A.1 Projections
171(1)
A.2 Orthogonally Scattered Set Functions
172(1)
A.3 Representation Theorems
173(4)
Bibliography 177(4)
Index 181
Vidyadhar Mandrekar and David A. Reddett