Muutke küpsiste eelistusi

E-raamat: Wearable Antennas and Electronics

  • Formaat: 316 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630818241
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 101,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 316 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630818241
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a complete overview of radar system theory and design for consumer applications, from basic short range radar theory to the integration into the real-world products, focusing particularly on gesture sensing in consumer products. It brings you step-by-step through the theoretical understandings, design procedures, analysis tools, and design examples of radar systems.

 

Packed with practical guidance learned from real consumer product development, the book explains how radar works in plain language; provides design principles applied in consumer products; demonstrates algorithms with real world measurement data; describes system trade-offs and cross-functional solutions for solving integration challenges; equips you to design your own radars in consumer electronics for motion sensing and gesture controls.

 

The book focuses on consumer-oriented radar systems with its theory, specifications, application, challenges in integration and co-existence with other radio components. It is self-contained to cover radar hardware, waveforms/modulations, signal processing, detection and classification, machine learning and UX design.

 

With its unique coverage of consumer-oriented radar systems, coupled with the authors practical experience in designing radars for todays consumer products, this is a must-have book for engineers and researchers working with radar systems in consumer electronics and mobile devices such as cell phone, wearables, and in the automotive industry. Downloadable MATLAB® scripts and Simulink models are included.
Preface xiii
1 Introduction
1(10)
1.1 Radar Basics and Types
2(3)
1.2 Frequency Bands and Civil Applications
5(3)
1.3 Radar Standardization
8(1)
1.4 Book Outline
8(3)
References
9(2)
2 Radar System Architecture and Range Equation
11(20)
2.1 Basic Hardware Components of Radar
11(8)
2.1.1 Transmitter/Receiver (Transceiver)
12(3)
2.1.2 Waveform Generator
15(1)
2.1.3 Antennas
16(3)
2.2 LFM Radar Architecture
19(1)
2.3 Receiver Noise
19(2)
2.4 Dynamic Range
21(1)
2.5 Radar Range Equation
22(5)
2.6 Radar System Integration
27(4)
References
28(3)
3 Radar Signal Model and Demodulation
31(44)
3.1 Signal Modeling
31(5)
3.1.1 Point Target
34(1)
3.1.2 Distributed Target
35(1)
3.2 Radar Waveforms and Demodulation
36(17)
3.2.1 Matched Filter
38(5)
3.2.2 Ambiguity Function
43(10)
3.3 Frequency Modulated Waveforms
53(13)
3.3.1 Conventional FMCW Waveforms
56(6)
3.3.2 LFM Chirp Train (Fast Chirp)
62(1)
3.3.3 Stretch Processing
63(3)
3.4 Phase Coded Waveforms
66(5)
3.4.1 Golay Codes
69(2)
3.5 Summary
71(4)
References
72(3)
4 Radar Signal Processing
75(34)
4.1 Range Processing (Fast Time Processing)
77(11)
4.1.1 Minimum Range and Maximum Unambiguous Range
78(1)
4.1.2 Pulse Compression
78(1)
4.1.3 Range Resolution
79(4)
4.1.4 Range Accuracy
83(2)
4.1.5 Time Sidelobes Control
85(3)
4.2 Doppler Processing (Slow Time Processing)
88(17)
4.2.1 Sampling Frequency in Slow Time Domain
92(4)
4.2.2 CIT Window Size
96(1)
4.2.3 MTI and Clutter Cancellation
97(4)
4.2.4 Moving Target Detector (Filter Bank)
101(1)
4.2.5 Doppler (Radial Velocity) Resolution
102(1)
4.2.6 Doppler (Radial Velocity) Accuracy
103(1)
4.2.7 Doppler Sidelobes Control
104(1)
4.3 Summary
105(4)
References
105(4)
5 Array Signal Processing
109(26)
5.1 Array Manifold and Model
110(6)
5.2 Conventional Beamforming
116(6)
5.2.1 Uniform Array and FFT Based Beamforming
118(2)
5.2.2 Array Resolution, Accuracy, and Sidelobes Control
120(2)
5.2.3 Digital Beamforming Versus Analog Beamforming
122(1)
5.3 High-Resolution Methods
122(4)
5.4 MIMO
126(9)
5.4.1 Virtual Array
126(3)
5.4.2 Basic MIMO Waveforms
129(3)
5.4.3 Summary
132(1)
References
133(2)
6 Motion and Presence Detection
135(26)
6.1 Introduction
135(1)
6.2 Detection Theory
136(4)
6.2.1 Hypothesis Testing and Decision Rules
136(3)
6.2.2 Neyman-Pearson Criterion and Likelihood Ratio Test
139(1)
6.3 Signal and Noise Models
140(4)
6.3.1 Target RCS Fluctuations
140(3)
6.3.2 Noise
143(1)
6.4 Threshold Detection
144(5)
6.4.1 Optimal Detection of Nonfluctuating Target
144(2)
6.4.2 Detection Performance
146(2)
6.4.3 Impact of Target Fluctuation
148(1)
6.5 Constant False Alarm Rate Detection
149(4)
6.5.1 Cell-Averaging CFAR
151(1)
6.5.2 Greatest-of and Least-of CFAR
152(1)
6.5.3 Ordered Statistics CFAR
153(1)
6.6 Clutter Rejection
153(4)
6.6.1 Regions of Interest
154(1)
6.6.2 Doppler Filtering
154(2)
6.6.3 Spatial Filtering
156(1)
6.6.4 Adaptive and Machine Learned Clutter Filters
157(1)
6.7 Interference
157(1)
6.8 Detection Pipeline Design
158(3)
References
158(3)
7 Radar Machine Learning
161(50)
7.1 Machine Learning Fundamentals
161(21)
7.1.1 Supervised Learning
162(2)
7.1.2 Linear Regression
164(6)
7.1.3 Logistic Regression
170(3)
7.1.4 Beyond Linear Models
173(1)
7.1.5 Neural Networks
174(8)
7.2 Radar Machine Learning
182(15)
7.2.1 Machine Learning Considerations for Radar
182(3)
7.2.2 Gesture Classification
185(12)
7.3 Training, Development, and Testing Datasets
197(1)
7.4 Evaluation Methodology
197(7)
7.4.1 Machine Learning Classification Metrics
199(3)
7.4.2 Classification Metrics for Time Series Data
202(2)
7.5 The Future of Radar Machine Learning
204(3)
7.5.1 What's Next?
205(1)
7.5.2 Self Supervised Learning
205(1)
7.5.3 Meta Learning
205(1)
7.5.4 Sensor Fusion
206(1)
7.5.5 Radar Standards, Libraries, and Datasets
207(1)
7.6 Conclusion
207(4)
References
207(4)
8 UX Design and Applications
211(20)
8.1 Overview
211(1)
8.2 Understanding Radar for Human-Computer Interaction
212(5)
8.3 A New Interaction Language for Radar Technology
217(6)
8.3.1 Explicit Interactions: Gestures
217(2)
8.3.2 Implicit Interactions: Anticipating Users' Behaviors
219(2)
8.3.3 Movement Primitives
221(2)
8.4 Use Cases
223(8)
References
229(2)
9 Research and Applications
231(6)
9.1 Technological Trends
231(2)
9.2 Radar Standardization
233(1)
9.3 Emerging Applications
233(4)
References
234(3)
About the Authors 237(2)
Index 239