Muutke küpsiste eelistusi

E-raamat: Wearable Bioelectronics

Edited by (Emeritus Professor of Biotechnology, SATM, Cranfield University, Bedfordshire, UK), Edited by (Postdoctoral Research Fellow, Stanford University, Materials Science and Engineering), Edited by (Associate Professor of Materials Science, Stanford University)
  • Formaat: PDF+DRM
  • Sari: Materials Today
  • Ilmumisaeg: 26-Nov-2019
  • Kirjastus: Elsevier / The Lancet
  • Keel: eng
  • ISBN-13: 9780081024089
  • Formaat - PDF+DRM
  • Hind: 211,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Materials Today
  • Ilmumisaeg: 26-Nov-2019
  • Kirjastus: Elsevier / The Lancet
  • Keel: eng
  • ISBN-13: 9780081024089

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications.

  • Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare
  • Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin
  • Examines and discusses the future of wearable bioelectronics
  • Addresses the wearable electronics market as a development of the healthcare industry
Contributors ix
Preface xi
Chapter 1 Materials, systems, and devices for wearable bioelectronics 1(48)
Shuqi Wang
Yuanyuan Bai
Ting Zhang
1.1 Introduction
1(1)
1.2 Materials and structural design for flexible/stretchable sensors
2(16)
1.2.1 Flexible/stretchable substrate
3(2)
1.2.2 Functional/active materials
5(7)
1.2.3 Stretchable electrodes
12(2)
1.2.4 Structural approaches for flexibility/stretchability
14(4)
1.3 Flexible/stretchable sensor devices for wearable bioelectronics
18(15)
1.3.1 Pressure/strain sensors
19(5)
1.3.2 Temperature sensors
24(5)
1.3.3 (Bio)chemical sensors
29(4)
1.4 Conclusions and perspectives
33(1)
References
34(10)
Further reading
44(5)
Chapter 2 Wearable chemical sensors 49(16)
Bo Wang
Andrew Wilhelm
Aaron Wilhelm
Sanaz Pilehvar
Sina Moshfeghi
Phoenix Stout
Kamyar Salahi
Sam Emaminejad
2.1 Target biomarker categories
50(2)
2.1.1 Electrolytes
51(1)
2.1.2 Metabolites
51(1)
2.1.3 Hormones
52(1)
2.1.4 Proteins and peptides
52(1)
2.2 Suitable chemical sensing interfaces
52(5)
2.2.1 Ion-selective electrodes
53(1)
2.2.2 Enzymatic sensors
54(2)
2.2.3 Affinity-based chemical sensors
56(1)
2.2.4 Synthetic receptor-based chemical sensors
56(1)
2.3 Electrochemical sensor integration
57(1)
2.3.1 Microfluidic interfaces
57(1)
2.3.2 Electronic integration
57(1)
2.4 Practical design considerations for wearable biomarker analysis
58(1)
References
59(6)
Chapter 3 Wearable biosensors and sample handling strategies 65(24)
Onur Parlak
Vincenzo F. Curto
Edilberto Ojeda
Lourdes Basabe-Desmonts
Fernando Benito-Lopez
Alberto Salleo
3.1 Wearable biosensors
65(12)
3.1.1 Tear-based biosensors
66(2)
3.1.2 Saliva-based biosensors
68(4)
3.1.3 Sweat-based biosensors
72(2)
3.1.4 Subcutaneous and implantable sensors
74(3)
3.2 Sample handling strategies
77(4)
3.2.1 Sampling strategies of sweat
78(3)
3.2.2 Sampling strategies of other bodily fluids
81(1)
3.3 Microfluidic-based wearable devices
81(3)
3.3.1 Colorimetric sensors
81(2)
3.3.2 Electrochemical sensors
83(1)
3.4 Conclusion
84(1)
References
85(4)
Chapter 4 Powering wearable bioelectronic devices 89(44)
Alina Sekretaryova
4.1 Introduction
89(1)
4.2 Wearable energy storage/supply devices
90(10)
4.2.1 Batteries
92(4)
4.2.2 Electrochemical capacitors
96(4)
4.3 Wearable energy-harvesting devices
100(19)
4.3.1 Biofuel cells
101(7)
4.3.2 Human body physical energy harvesters
108(9)
4.3.3 Photovoltaic cells
117(2)
4.4 Wireless power transfer
119(1)
4.5 Problems and future perspectives
120(6)
References
126(6)
Further reading
132(1)
Chapter 5 E-skin and wearable systems for health care 133(46)
William Navaraj
Clara Smith
Ravinder Dahiya
5.1 Introduction
133(1)
5.2 Components of e-skin systems
134(16)
5.2.1 Substrates
136(4)
5.2.2 Active switching devices
140(2)
5.2.3 Sensors
142(6)
5.2.4 Interconnects
148(1)
5.2.5 Actuators
148(2)
5.3 Applications of e-skin
150(20)
5.3.1 Topical e-skin systems
151(6)
5.3.2 Implantable e-skin
157(4)
5.3.3 Inanimato e-skin
161(9)
5.4 Summary
170(1)
References
171(7)
Further reading
178(1)
Chapter 6 Wearable device for thermotherapies 179(22)
Minyoung Suh
Sergio Curto
Punit Prakash
Gerard van Rhoon
6.1 Introduction
179(3)
6.2 Thermal applications
182(2)
6.2.1 Thermal monitoring
182(1)
6.2.2 Thermal comfort
183(1)
6.2.3 Pain management
183(1)
6.2.4 Cancer therapy
183(1)
6.3 Material
184(2)
6.3.1 Conductors
185(1)
6.3.2 Dielectrics
185(1)
6.4 Fabrication methods and challenges
186(4)
6.4.1 Conductive printing
187(1)
6.4.2 Laminating and etching
188(1)
6.4.3 Weaving
188(1)
6.4.4 Knitting
188(1)
6.4.5 Embroidery
189(1)
6.5 Antenna (electrode)
190(4)
6.5.1 Contact flexible microstrip applicators
191(1)
6.5.2 Conformal microwave array
192(1)
6.5.3 Multielement spiral antenna
192(1)
6.5.4 Breast array thermotherapy
193(1)
6.5.5 Current sheet applicators
193(1)
6.6 Other design considerations
194(2)
6.6.1 Water bolus
194(1)
6.6.2 Numerical and tissue-equivalent numerical phantoms
195(1)
References
196(5)
Chapter 7 Soft actuator materials for textile muscles and wearable bioelectronics 201(18)
Edwin W.H. Jager
Jose G. Martinez
Yong Zhong
Nils-Krister Persson
7.1 Introduction
201(1)
7.2 Advantages of textiles for actuators
202(1)
7.3 Smart textiles
203(1)
7.4 Yarn actuators
204(2)
7.5 Textile actuators
206(7)
7.5.1 Thermally activated textile actuators
208(2)
7.5.2 CP textile actuators
210(3)
7.6 Application areas
213(2)
7.7 Conclusions
215(1)
Acknowledgments
215(1)
References
215(3)
Further reading
218(1)
Index 219
Professor Anthony P.F. Turner PhD; DSc; FRSC; is a pioneer in the field of biosensors and bioelectronics. He is Emeritus Professor of Biotechnology at Cranfield University in the UK, a Foreign Member of the USA National Academy of Engineering, Editor-in-Chief of the journal Biosensors & Bioelectronics (Elsevier), and Executive Chair of the World Congress on Biosensors (Elsevier). He is Member of the Royal Swedish Academy of Engineering Science and Fellow of the Royal Society of Chemistry. Alberto Salleo is currently an Associate Professor of Materials Science at Stanford University. Alberto Salleo graduated as a Fulbright Fellow with a PhD in Materials Science from UC Berkeley in 2001 working at Lawrence Livermore National Laboratory on laser-induced optical breakdown in fused silica. From 2001 to 2005 Salleo was first post-doctoral research fellow and successively member of research staff at Xerox Palo Alto Research Center, where he worked with Bob Street on device and materials physics of disordered and polymeric semiconductors. In 2005 Salleo joined the Materials Science and Engineering Department at Stanford as an Assistant Professor. While at Stanford, Salleo won the NSF Career Award, the 3M Untenured Faculty Award, the SPIE Early Career Award, the Tau Beta Pi Excellence in Undergraduate Teaching Award and the Gores Teaching Award, Stanfords highest teaching honor. Prof. Salleo is a Principal Editor of MRS Communications. Onur Parlak is a postdoctoral research fellow at Stanford University, Materials Science and Engineering. He received his PhD degree in Bioelectronics from Linköping University, Biosensors and Bioelectronics Centre in September 2015. Earlier, he was visiting research intern at Nanyang Technological University, Materials Science and Engineering Department, Singapore in 2011. He received his master and bachelor degree from Izmir Institute of Technology, Department of Chemistry in 2011 and 2009, respectively.

Dr. Parlaks research in Stanford University focuses on wearable biosensors for early diagnosis of metabolic disease, and energy devices for wearable bioelectronics.