Muutke küpsiste eelistusi

E-raamat: Web Technologies and Applications: APWeb 2016 Workshops, WDMA, GAP, and SDMA, Suzhou, China, September 23-25, 2016, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of three workshops held at the 18th Asia-Pacific Web Conference, APWeb 2016, in Suzhou, China, in September 2016: the Second International Workshop on Web Data Mining and Applications, WDMA 2016, the First International Workshop on Graph Analytics and Query Processing, GAP 2016, and the First International Workshop on Spatial-temporal Data Management and Analytics, SDMA 2016.





The 27 full papers included in this book were carefully reviewed and selected from 37 submissions. The goal of these workshops is to promote the new research directions and applications, especially on web data, graph data, and spatial-temporal data management and analytics.





 
Maximizing the Cooperative Influence Spread in a Social Network Oriented
to Viral Marketing.- A Multi-Model Based Approach for Big Data Analytics: the
Case on Education Grant Distribution.- Sentiment Target Extraction Based on
CRFs with Multi-features for Chinese Microblog.- EMD-DSJoin: Efficient
Similarity Join over Probabilistic Data Streams Based on Earth Movers
Distance.- Sentiment Analysis on User Reviews through Lexicon and Rule-based
Approach.- Social Link Prediction Based on the Nodes' Information Transfer.-
An Improved ML-kNN Approach Based on Coupled Similarity.- A Novel
Recommendation Method Based on Users Interest and Heterogeneous
Information.- Knee point-driven bottleneck detection algorithm for cloud
service system.- Confirmatory Analysis on Influencing Factors When Mention
Users in Twitter.- A stock recommendation strategy based on M-LDA model.-
Short-term Forecasting and Application about Indoor CoolingLoad Based on
EDA-PSO-BP Algorithm.- Identifying Relevant Subgraphs in Large networks.-
User-dependent Multi-relational Community Detection in Social Networks.-
Compressing Streaming Graph Data Based on Triangulation.- Scene
Classification in High Resolution Remotely Sensed Images based on PCANet.-
Finding Top-k Places for Group Social Activities.- Temporal Spatial-Keyword
Search On Databases Using SQL.- Features of Rumor Spreading on WeChat
Moments.- Distance-Based Continuous Skylines On Geo-Textual Data.- Improving
Urban Traffic Evacuation Capability in Emergency Response by Using Smart
Phones.- Context Enhanced Keyword Extraction for Sparse Geo-entity Relation
from Web Texts.- A Stacked Generalization Framework for City Traffic Related
Geospatial Data Analysis.-Detection of Statistically Significant Bus Delay
Aggregation by Spatial-Temporal Scanning.- Acquisition and Representation of
Knowledge for Academic Field.- Using Learning Features to Find Similar
Trajectories.- An Algorithm for Mining Moving Flock Patterns from Pedestrian
Trajectories.