Muutke küpsiste eelistusi

E-raamat: Weighted Shifts on Directed Trees

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 92,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A new class of (not necessarily bounded) operators related to (mainly infinite) directed trees is introduced and investigated. Operators in question are to be considered as a generalization of classical weighted shifts, on the one hand, and of weighted adjacency operators, on the other; they are called weighted shifts on directed trees. The basic properties of such operators, including closedness, adjoints, polar decomposition and moduli are studied. Circularity and the Fredholmness of weighted shifts on directed trees are discussed. The relationships between domains of a weighted shift on a directed tree and its adjoint are described. Hyponormality, cohyponormality, subnormality and complete hyperexpansivity of such operators are entirely characterized in terms of their weights. Related questions that arose during the study of the topic are solved as well.
Chapter 1 Introduction 1(8)
Chapter 2 Prerequisites 9(10)
2.1 Directed trees
9(7)
2.2 Operator theory
16(3)
Chapter 3 Fundamental Properties 19(20)
3.1 An invitation to weighted shifts
19(5)
3.2 Unitary equivalence
24(1)
3.3 Circularity
25(2)
3.4 Adjoints and moduli
27(3)
3.5 The polar decomposition
30(2)
3.6 Fledholm directed trees
32(7)
Chapter 4 Inclusions of Domains 39(10)
4.1 When is D(Sλ) subset of D(S*λ)?
39(1)
4.2 When is D(S*λ) subset of D(Sλ)?
40(6)
4.3 An example
46(3)
Chapter 5 Hyponormality and Cohyponormality 49(8)
5.1 Hyponormality
49(2)
5.2 Cohyponormality
51(3)
5.3 Examples
54(3)
Chapter 6 Subnormality 57(18)
6.1 A general approach
57(7)
6.2 Subnormality on assorted directed trees
64(6)
6.3 Modelling subnormality on Jη,κ
70(5)
Chapter 7 Complete Hyperexpansivity 75(20)
7.1 A general approach
75(4)
7.2 Complete hyperexpansivity on Jη,κ
79(3)
7.3 Modelling complete hyperexpansivity on Jη,κ
82(6)
7.4 Completion of weights on Jη,κ
88(3)
7.5 Graph extensions
91(4)
Chapter 8 Miscellanea 95(8)
8.1 Admissibility of assorted weighted shifts
95(3)
8.2 p-hyponormality
98(5)
Bibliography 103(4)
List of symbols 107