Muutke küpsiste eelistusi

E-raamat: Whole-Angle MEMS Gyroscopes: Challenges and Opportunities

  • Formaat - PDF+DRM
  • Hind: 144,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents the mathematical framework, technical language, and control systems know-how needed to design, develop, and instrument micro-scale whole-angle gyroscopes

This comprehensive reference covers the technical fundamentals, mathematical framework, and common control strategies for degenerate mode gyroscopes, which are used in high-precision navigation applications. It explores various energy loss mechanisms and the effect of structural imperfections, along with requirements for continuous rate integrating gyroscope operation. It also provides information on the fabrication of MEMS whole-angle gyroscopes and the best methods of sustaining oscillations.

Whole-Angle Gyroscopes: Challenges and Opportunities begins with a brief overview of the two main types of Coriolis Vibratory Gyroscopes (CVGs): non-degenerate mode gyroscopes and degenerate mode gyroscopes. It then introduces readers to the Foucault Pendulum analogy and a review of MEMS whole angle mode gyroscope development. Chapters cover: dynamics of whole-angle coriolis vibratory gyroscopes; fabrication of whole-angle coriolis vibratory gyroscopes; energy loss mechanisms of coriolis vibratory gyroscopes; and control strategies for whole-angle coriolis vibratory gyro- scopes. The book finishes with a chapter on conventionally machined micro-machined gyroscopes, followed by one on micro-wineglass gyroscopes. In addition, the book:

  • Lowers barrier to entry for aspiring scientists and engineers by providing a solid understanding of the fundamentals and control strategies of degenerate mode gyroscopes
  • Organizes mode-matched mechanical gyroscopes based on three classifications: wine-glass, ring/disk, and mass spring mechanical elements
  • Includes case studies on conventionally micro-machined and 3-D micro-machined gyroscopes

Whole-Angle Gyroscopes is an ideal book for researchers, scientists, engineers, and college/graduate students involved in the technology. It will also be of great benefit to engineers in control systems, MEMS production, electronics, and semi-conductors who work with inertial sensors.

List of Abbreviations
ix
Preface xi
About the Authors xiii
Part I Fundamentals of Whole-Angle Gyroscopes
1(36)
1 Introduction
3(8)
1.1 Types of Coriolis Vibratory Gyroscopes
3(2)
1.1.1 Nondegenerate Mode Gyroscopes
4(1)
1.1.2 Degenerate Mode Gyroscopes
5(1)
1.2 Generalized CVG Errors
5(4)
1.2.1 Scale Factor Errors
7(1)
1.2.2 Bias Errors
7(1)
1.2.3 Noise Processes
7(1)
1.2.3.1 Allan Variance
7(2)
1.3 Overview
9(2)
2 Dynamics
11(12)
2.1 Introduction to Whole-Angle Gyroscopes
11(1)
2.2 Foucault Pendulum Analogy
11(7)
2.2.1 Damping and Q-factor
12(1)
2.2.1.1 Viscous Damping
13(1)
2.2.1.2 Anchor Losses
14(1)
2.2.1.3 Material Losses
15(1)
2.2.1.4 Surface Losses
16(1)
2.2.1.5 Mode Coupling Losses
16(1)
2.2.1.6 Additional Dissipation Mechanisms
16(1)
2.2.2 Principal Axes of Elasticity and Damping
16(2)
2.3 Canonical Variables
18(1)
2.4 Effect of Structural Imperfections
18(2)
2.5 Challenges of Whole-Angle Gyroscopes
20(3)
3 Control Strategies
23(14)
3.1 Quadrature and Coriolis Duality
23(1)
3.2 Rate Gyroscope Mechanization
24(5)
3.2.1 Open-loop Mechanization
24(1)
3.2.1.1 Drive Mode Oscillator
24(2)
3.2.1.2 Amplitude Gain Control
26(1)
3.2.1.3 Phase Locked Loop/Demodulation
26(1)
3.2.1.4 Quadrature Cancellation
26(1)
3.2.2 Force-to-rebalance Mechanization
27(1)
3.2.2.1 Force-to-rebalance Loop
27(2)
3.2.2.2 Quadrature Null Loop
29(1)
3.3 Whole-Angle Mechanization
29(6)
3.3.1 Control System Overview
30(2)
3.3.2 Amplitude Gain Control
32(1)
3.3.2.1 Vector Drive
32(1)
3.3.2.2 Parametric Drive
33(1)
3.3.3 Quadrature Null Loop
34(1)
3.3.3.1 AC Quadrature Null
34(1)
3.3.3.2 DC Quadrature Null
34(1)
3.3.4 Force-to-rebalance and Virtual Carouseling
35(1)
3.4 Conclusions
35(2)
Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures
37(28)
4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes
39(8)
4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures
39(3)
4.1.1 Lumped Mass Systems
39(1)
4.1.2 Ring/Disk Systems
40(1)
4.1.2.1 Ring Gyroscopes
40(1)
4.1.2.2 Concentric Ring Systems
41(1)
4.1.2.3 Disk Gyroscopes
42(1)
4.2 2-D Micro-Machining Processes
42(5)
4.2.1 Traditional Silicon MEMS Process
43(1)
4.2.2 Integrated MEMS/CMOS Fabrication Process
43(1)
4.2.3 Epitaxial Silicon Encapsulation Process
44(3)
5 Example 2-D Micro-Machined Whole-Angle Gyroscopes
47(18)
5.1 A Distributed Mass MEMS Gyroscope -- Toroidal Ring Gyroscope
47(7)
5.1.1 Architecture
48(1)
5.1.1.1 Electrode Architecture
49(1)
5.1.2 Experimental Demonstration of the Concept
49(1)
5.1.2.1 Fabrication
49(1)
5.1.2.2 Experimental Setup
50(1)
5.1.2.3 Mechanical Characterization
51(1)
5.1.2.4 Rate Gyroscope Operation
52(1)
5.1.2.5 Comparison of Vector Drive and Parametric Drive
53(1)
5.2 A Lumped Mass MEMS Gyroscope -- Dual Foucault Pendulum Gyroscope
54(11)
5.2.1 Architecture
56(1)
5.2.1.1 Electrode Architecture
57(1)
5.2.2 Experimental Demonstration of the Concept
57(1)
5.2.2.1 Fabrication
57(1)
5.2.2.2 Experimental Setup
58(2)
5.2.2.3 Mechanical Characterization
60(1)
5.2.2.4 Rate Gyroscope Operation
60(1)
5.2.2.5 Parameter Identification
60(5)
Part III 3-D Micro-Machined Whole-Angle Gyroscope Architectures
65(72)
6 Overview of 3-D Shell Implementations
67(20)
6.1 Macro-scale Hemispherical Resonator Gyroscopes
67(2)
6.2 3-D Micro-Shell Fabrication Processes
69(10)
6.2.1 Bulk Micro-Machining Processes
69(5)
6.2.2 Surface-Micro-Machined Micro-Shell Resonators
74(5)
6.3 Transduction of 3-D Micro-Shell Resonators
79(8)
6.3.1 Electromagnetic Excitation
79(1)
6.3.2 Optomechanical Detection
80(1)
6.3.3 Electrostatic Transduction
81(6)
7 Design and Fabrication of Micro-glassblown Wineglass Resonators
87(24)
7.1 Design of Micro-Glassblown Wineglass Resonators
88(14)
7.1.1 Design of Micro-Wineglass Geometry
90(1)
7.1.1.1 Analytical Solution
90(2)
7.1.1.2 Finite Element Analysis
92(2)
7.1.1.3 Effect of Stem Geometry on Anchor Loss
94(2)
7.1.2 Design for High Frequency Symmetry
96(1)
7.1.2.1 Frequency Symmetry Scaling Laws
97(4)
7.1.2.2 Stability of Micro-Glassblown Structures
101(1)
7.2 An Example Fabrication Process for Micro-glassblown Wineglass Resonators
102(4)
7.2.1 Substrate Preparation
103(1)
7.2.2 Wafer Bonding
103(1)
7.2.3 Micro-Glassblowing
104(1)
7.2.4 Wineglass Release
105(1)
7.3 Characterization of Micro-Glassblown Shells
106(5)
7.3.1 Surface Roughness
107(1)
7.3.2 Material Composition
108(3)
8 Transduction of Micro-Glassblown Wineglass Resonators
111(22)
8.1 Assembled Electrodes
111(4)
8.1.1 Design
111(1)
8.1.2 Fabrication
112(1)
8.1.2.1 Experimental Characterization
113(2)
8.2 In-plane Electrodes
115(1)
8.3 Fabrication
115(3)
8.4 Experimental Characterization
118(5)
8.5 Out-of-plane Electrodes
123(1)
8.6 Design
123(3)
8.7 Fabrication
126(3)
8.8 Experimental Characterization
129(4)
9 Conclusions and Future Trends
133(4)
9.1 Mechanical Trimming of Structural Imperfections
133(1)
9.2 Self-calibration
134(1)
9.3 Integration and Packaging
135(2)
References 137(12)
Index 149
Doruk Senkal, PhD, has been working on the development of Inertial Navigation Technologies for Augmented and Virtual Reality applications at Facebook since 2018. Before joining Facebook, he was developing MEMS Inertial Sensors for mobile devices at TDK Invensense. He received his Ph.D. degree in 2015 from University of California, Irvine, with a focus on MEMS Coriolis Vibratory Gyroscopes. Dr. Senkal 's research interests, represented in over 20 international conference papers, 9 peer-reviewed journal papers, and 16 patent applications, encompass all aspects of MEMS inertial sensor development, including sensor design, device fabrication, algorithms, and control.

Andrei M. Shkel, PhD, has been on faculty at the University of California, Irvine since 2000, and served as a Program Manager in the Microsystems Technology Office of DARPA. His research interests are reflected in over 250 publications, 40 patents, and 2 books. Dr. Shkel has been on a number of editorial boards, including Editor of IEEE/ASME JMEMS and the founding chair of the IEEE Inertial Sensors. He was awarded the Office of the Secretary of Defense Medal for Exceptional Public Service in 2013, and the 2009 IEEE Sensors Council Technical Achievement Award. He is the IEEE Fellow.