|
|
ix | |
Preface |
|
xi | |
About the Authors |
|
xiii | |
|
Part I Fundamentals of Whole-Angle Gyroscopes |
|
|
1 | (36) |
|
|
3 | (8) |
|
1.1 Types of Coriolis Vibratory Gyroscopes |
|
|
3 | (2) |
|
1.1.1 Nondegenerate Mode Gyroscopes |
|
|
4 | (1) |
|
1.1.2 Degenerate Mode Gyroscopes |
|
|
5 | (1) |
|
1.2 Generalized CVG Errors |
|
|
5 | (4) |
|
1.2.1 Scale Factor Errors |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
7 | (2) |
|
|
9 | (2) |
|
|
11 | (12) |
|
2.1 Introduction to Whole-Angle Gyroscopes |
|
|
11 | (1) |
|
2.2 Foucault Pendulum Analogy |
|
|
11 | (7) |
|
2.2.1 Damping and Q-factor |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
2.2.1.5 Mode Coupling Losses |
|
|
16 | (1) |
|
2.2.1.6 Additional Dissipation Mechanisms |
|
|
16 | (1) |
|
2.2.2 Principal Axes of Elasticity and Damping |
|
|
16 | (2) |
|
|
18 | (1) |
|
2.4 Effect of Structural Imperfections |
|
|
18 | (2) |
|
2.5 Challenges of Whole-Angle Gyroscopes |
|
|
20 | (3) |
|
|
23 | (14) |
|
3.1 Quadrature and Coriolis Duality |
|
|
23 | (1) |
|
3.2 Rate Gyroscope Mechanization |
|
|
24 | (5) |
|
3.2.1 Open-loop Mechanization |
|
|
24 | (1) |
|
3.2.1.1 Drive Mode Oscillator |
|
|
24 | (2) |
|
3.2.1.2 Amplitude Gain Control |
|
|
26 | (1) |
|
3.2.1.3 Phase Locked Loop/Demodulation |
|
|
26 | (1) |
|
3.2.1.4 Quadrature Cancellation |
|
|
26 | (1) |
|
3.2.2 Force-to-rebalance Mechanization |
|
|
27 | (1) |
|
3.2.2.1 Force-to-rebalance Loop |
|
|
27 | (2) |
|
3.2.2.2 Quadrature Null Loop |
|
|
29 | (1) |
|
3.3 Whole-Angle Mechanization |
|
|
29 | (6) |
|
3.3.1 Control System Overview |
|
|
30 | (2) |
|
3.3.2 Amplitude Gain Control |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
3.3.3 Quadrature Null Loop |
|
|
34 | (1) |
|
3.3.3.1 AC Quadrature Null |
|
|
34 | (1) |
|
3.3.3.2 DC Quadrature Null |
|
|
34 | (1) |
|
3.3.4 Force-to-rebalance and Virtual Carouseling |
|
|
35 | (1) |
|
|
35 | (2) |
|
Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures |
|
|
37 | (28) |
|
4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes |
|
|
39 | (8) |
|
4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures |
|
|
39 | (3) |
|
4.1.1 Lumped Mass Systems |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
4.1.2.2 Concentric Ring Systems |
|
|
41 | (1) |
|
|
42 | (1) |
|
4.2 2-D Micro-Machining Processes |
|
|
42 | (5) |
|
4.2.1 Traditional Silicon MEMS Process |
|
|
43 | (1) |
|
4.2.2 Integrated MEMS/CMOS Fabrication Process |
|
|
43 | (1) |
|
4.2.3 Epitaxial Silicon Encapsulation Process |
|
|
44 | (3) |
|
5 Example 2-D Micro-Machined Whole-Angle Gyroscopes |
|
|
47 | (18) |
|
5.1 A Distributed Mass MEMS Gyroscope -- Toroidal Ring Gyroscope |
|
|
47 | (7) |
|
|
48 | (1) |
|
5.1.1.1 Electrode Architecture |
|
|
49 | (1) |
|
5.1.2 Experimental Demonstration of the Concept |
|
|
49 | (1) |
|
|
49 | (1) |
|
5.1.2.2 Experimental Setup |
|
|
50 | (1) |
|
5.1.2.3 Mechanical Characterization |
|
|
51 | (1) |
|
5.1.2.4 Rate Gyroscope Operation |
|
|
52 | (1) |
|
5.1.2.5 Comparison of Vector Drive and Parametric Drive |
|
|
53 | (1) |
|
5.2 A Lumped Mass MEMS Gyroscope -- Dual Foucault Pendulum Gyroscope |
|
|
54 | (11) |
|
|
56 | (1) |
|
5.2.1.1 Electrode Architecture |
|
|
57 | (1) |
|
5.2.2 Experimental Demonstration of the Concept |
|
|
57 | (1) |
|
|
57 | (1) |
|
5.2.2.2 Experimental Setup |
|
|
58 | (2) |
|
5.2.2.3 Mechanical Characterization |
|
|
60 | (1) |
|
5.2.2.4 Rate Gyroscope Operation |
|
|
60 | (1) |
|
5.2.2.5 Parameter Identification |
|
|
60 | (5) |
|
Part III 3-D Micro-Machined Whole-Angle Gyroscope Architectures |
|
|
65 | (72) |
|
6 Overview of 3-D Shell Implementations |
|
|
67 | (20) |
|
6.1 Macro-scale Hemispherical Resonator Gyroscopes |
|
|
67 | (2) |
|
6.2 3-D Micro-Shell Fabrication Processes |
|
|
69 | (10) |
|
6.2.1 Bulk Micro-Machining Processes |
|
|
69 | (5) |
|
6.2.2 Surface-Micro-Machined Micro-Shell Resonators |
|
|
74 | (5) |
|
6.3 Transduction of 3-D Micro-Shell Resonators |
|
|
79 | (8) |
|
6.3.1 Electromagnetic Excitation |
|
|
79 | (1) |
|
6.3.2 Optomechanical Detection |
|
|
80 | (1) |
|
6.3.3 Electrostatic Transduction |
|
|
81 | (6) |
|
7 Design and Fabrication of Micro-glassblown Wineglass Resonators |
|
|
87 | (24) |
|
7.1 Design of Micro-Glassblown Wineglass Resonators |
|
|
88 | (14) |
|
7.1.1 Design of Micro-Wineglass Geometry |
|
|
90 | (1) |
|
7.1.1.1 Analytical Solution |
|
|
90 | (2) |
|
7.1.1.2 Finite Element Analysis |
|
|
92 | (2) |
|
7.1.1.3 Effect of Stem Geometry on Anchor Loss |
|
|
94 | (2) |
|
7.1.2 Design for High Frequency Symmetry |
|
|
96 | (1) |
|
7.1.2.1 Frequency Symmetry Scaling Laws |
|
|
97 | (4) |
|
7.1.2.2 Stability of Micro-Glassblown Structures |
|
|
101 | (1) |
|
7.2 An Example Fabrication Process for Micro-glassblown Wineglass Resonators |
|
|
102 | (4) |
|
7.2.1 Substrate Preparation |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
7.3 Characterization of Micro-Glassblown Shells |
|
|
106 | (5) |
|
|
107 | (1) |
|
7.3.2 Material Composition |
|
|
108 | (3) |
|
8 Transduction of Micro-Glassblown Wineglass Resonators |
|
|
111 | (22) |
|
|
111 | (4) |
|
|
111 | (1) |
|
|
112 | (1) |
|
8.1.2.1 Experimental Characterization |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
115 | (3) |
|
8.4 Experimental Characterization |
|
|
118 | (5) |
|
8.5 Out-of-plane Electrodes |
|
|
123 | (1) |
|
|
123 | (3) |
|
|
126 | (3) |
|
8.8 Experimental Characterization |
|
|
129 | (4) |
|
9 Conclusions and Future Trends |
|
|
133 | (4) |
|
9.1 Mechanical Trimming of Structural Imperfections |
|
|
133 | (1) |
|
|
134 | (1) |
|
9.3 Integration and Packaging |
|
|
135 | (2) |
References |
|
137 | (12) |
Index |
|
149 | |