Muutke küpsiste eelistusi

E-raamat: Wideband Circuit Design

(Cornell University)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 234,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors Carlin (engineering, Cornell U.) and Civalleri (electrotechnics, Politecnico di Torino; Turin, Italy) note that their book about the theoretical aspects of network theory as applied to wideband circuit design unfolds like a novel: foundation material leads to more complex developments in telecommunications and related fields as the plot, so to speak, unfolds. From general properties of linear circuits and systems, they proceed to such topics as LTI system response to exponential eigenfunctions, one-port synthesis, transmission lines, and broadband matching (analytic theory and real frequency technique). Material on analytic functions and linear algebra are appended. Annotation c. by Book News, Inc., Portland, Or.

Wideband Circuit Design starts at a foundational level and proceeds at a carefully gauged pace to advanced topics, providing a self-sufficient text for specialization in wideband analog circuit design for the fields of telecommunications and related areas. Basic theory and comprehensive circuit analysis methods (oriented for application to general network computer programs) are detailed and then extended to applicational topics such as filters, delay structures, equalizers, matching networks, broadband amplifiers, and microwave components.
Novel and simplified approaches to such fundamental topics as linear circuit time domain response, synthesis of cascaded networks, and the construction of Chebychev and elliptic transfer functions are given. For the first time in book form a unified presentation of analytic matching and gain-bandwidth theory, integrated with the numerical Real Frequency design technique (originally published by the authors), is delineated. Wideband Circuit Design presents all the concepts, techniques, and procedures you need to gain the broad understanding necessary for finding creative solutions to wideband circuit design problems.
Preface
1 General Properties of Linear Circuits and Systems
1(22)
1.1 Operator Representation
1(2)
1.2 Linear Time Invariant Systems and Operators
3(3)
1.3 Causality
6(2)
1.4 Power, Energy, and Passivity
8(9)
1.5 Passivity, Linearity and Causality
17(6)
2 LTI System Response to Exponential Eigenfunctions
23(82)
2.1 Solution of Operator Equations
23(4)
2.2 LTI Operator Eigenfunctions
27(4)
2.3 Homogeneous Solution of LTI Operator Equations
31(6)
2.4 The Particular Solution under Exponential Excitation
37(3)
2.5 Conditions for Pure Eigenfunction Response
40(4)
2.6 Phasors and A.C. Analysis
44(2)
2.7 Network Geometry
46(7)
2.8 Topology and Kirchhoff's Laws
53(5)
2.9 Nodal Analysis
58(8)
2.10 Mesh and Loop Analysis
66(8)
2.11 Cut Set Analysis
74(4)
2.12 Transfer Functions and n-Ports
78(11)
2.13 Incidence Matrices and Network Equations
89(6)
2.14 Tellegen's Theorem, Reciprocity, and Power
95(10)
3 Impulses, Convolution, and Integral Transforms
105(66)
3.1 The Impulse Function
105(5)
3.2 The Fourier Integral Theorem
110(11)
3.3 Impulse Response and Convolution
121(5)
3.4 Real-Imaginary Part Relations; The Hilbert Transform
126(6)
3.5 Causal Fourier Transforms
132(8)
3.6 Minimum Immittance Functions
140(3)
3.7 Amplitude-Phase Relations
143(5)
3.8 Numerical Evaluation of Hilbert Transforms
148(4)
3.9 Operational Rules and Generalized Fourier Transforms
152(7)
3.10 Laplace Transforms and Eigenfunction Response
159(12)
4 The Scattering Matrix and Realizability Theory
171(42)
4.1 Physical Properties of n-Ports
171(2)
4.2 General Representations of n-Ports
173(6)
4.3 The Scattering Matrix Normalized to Positive Resistors
179(7)
4.4 Scattering Relations for Energy and Power
186(2)
4.5 Bounded Real Scattering Matrices
188(12)
4.6 Positive Real Immittance Matrices
200(10)
4.7 The Degree of a One-Port
210(3)
5 One-Port Synthesis
213(70)
5.1 Introduction
213(1)
5.2 Lossless One-Port Synthesis
214(13)
5.3 RC and RL One-Port Synthesis
227(4)
5.4 The Scattering Matrix of a Lossless Two-Port
231(7)
5.5 The Immittance Matrices of a Lossless Two-Port
238(2)
5.6 Transmission Zeros
240(2)
5.7 Darlington's Procedure of Synthesis
242(7)
5.8 An Example
249(3)
5.9 Cascade Synthesis: Type A and B Sections
252(2)
5.10 Cascade Synthesis: Brune's Section
254(8)
5.11 Cascade Synthesis: Darlington's C-Section
262(5)
5.12 Cascade Synthesis: Darlington's D-Section
267(7)
5.13 Ladder Synthesis: Fujisawa's Theorem
274(5)
5.14 Transmission Zeros All Lying at Infinity and or the Origin
279(4)
6 Insertion Loss Filters
283(54)
6.1 The Concept of a Filter and the Approximation Problem
283(3)
6.2 Synthesis of doubly terminated filters
286(3)
6.3 Impedance Scaling, Frequency Transformations
289(7)
6.4 Specifications for Amplitude Approximation
296(3)
6.5 Butterworth Approximation
299(5)
6.6 Chebyshev Approximation
304(8)
6.7 Elliptic Approximation
312(9)
6.8 Phase Equalization
321(2)
6.9 Allpass C-Section Phase Equalizers
323(3)
6.10 Allpass D-Section Phase Equalizers
326(3)
6.11 Bessel Approximation
329(3)
6.12 Synthesis of Single-Terminated Filters
332(5)
7 Transmission Lines
337(46)
7.1 The TEM Line
337(4)
7.2 The Unit Element (UE); Richards' Transformation
341(9)
7.3 Richards' Theorem: UE Reactance Functions
350(2)
7.4 Doubly Terminated UE Cascade
352(4)
7.5 Stepped Line Gain Approximations
356(9)
7.6 Transfer Functions for Stepped Lines and Stubs
365(8)
7.7 Coupled UE Structures
373(10)
8 Broadband Matching I: Analytic Theory
383(32)
8.1 The Broadbanding Problem
383(2)
8.2 The Chain Matrix of a Lossless Two-Port
385(1)
8.3 Complex Normalization
386(5)
8.4 The Gain-Bandwidth Restrictions
391(10)
8.5 The Gain-Bandwidth Restrictions in Integral Form
401(5)
8.6 Example: Double Zero of Transmission
406(2)
8.7 Double Matching
408(7)
9 Broadband Matching II: Real Frequency Technique
415(24)
9.1 Introduction
415(4)
9.2 Single Matching
419(6)
9.3 Transmission Line Equalizers
425(4)
9.4 Double Matching
429(4)
9.5 Double Matching of Active Devices
433(6)
Appendices 439(1)
A Analytic Functions 439(26)
A.1 General Concepts 439(3)
A.2 Integration of Analytic Functions 442(2)
A.3 The Cauchy Integral Formula 444(1)
A.4 Laurent and Taylor Expansions 445(3)
A.5 The Theorem of Residues 448(1)
A.6 Zeros, Poles and Essential Singularities 449(2)
A.7 Some Theorems on Analytic Functions 451(1)
A.8 Classification of Analytic Functions 452(1)
A.9 Multivalued Functions 453(2)
A.10 The Logarithmic Derivative 455(1)
A.11 Functions with a Finite Number of Singularities 456(1)
A.12 Analytic Continuation 457(2)
A.13 Calculus of Definite Integrals by the Residue Method 459(6)
B Linear Algebra 465(18)
B.1 General Concepts 465(2)
B.2 Geometrical Interpretation 467(4)
B.3 Linear Simultaneous Equations 471(6)
B.4 Eigenvalues and Eigenvectors 477(6)
Index 483
Herbert J. Carlin