Muutke küpsiste eelistusi

E-raamat: WiMAX: Technologies, Performance Analysis, and QoS

Edited by (Florida Atlantic University, Boca Raton, USA), Edited by (Microsoft Corporation, Bellevue, Washington, USA)
  • Formaat: 294 pages
  • Sari: WiMAX Handbook
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420045277
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 294 pages
  • Sari: WiMAX Handbook
  • Ilmumisaeg: 08-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781420045277

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As the demand for broadband services continues to grow worldwide, traditional solutions, such as digital cable and fiber optics, are often difficult and expensive to implement, especially in rural and remote areas. The emerging WiMAX system satisfies the growing need for high data-rate applications such as voiceover IP, video conferencing, interactive gaming, and multimedia streaming. WiMAX deployments not only serve residential and enterprise users but can also be deployed as a backhaul for Wi-Fi hotspots or 3G cellular towers. By providing affordable wireless broadband access, the technology of WiMAX will revolutionize broadband communications in the developed world and bridge the digital divide in developing countries.

Part of the WiMAX Handbook, this volume focuses on the technologies behind WiMAX, its performance capabilities, and its control mechanisms. The book introduces programmable baseband processors suited for WiMAX systems, describes an innovative methodology for the design of multi-band WiMAX antennas, addresses space-time block codes, and reviews space-frequency/space-time-frequency code design criteria. It also proposes a combined call admission control and scheduling scheme, focuses on the performance analysis of the IEEE 802.16 mesh mode, and analyzes the performance of both single-input-single-output and space-time-block-coded OFDM systems in mobile environments. The final section establishes a framework of an ideal reservation period controller, examines the ecosystem in which scheduling for IEEE 802.16e systems must be performed, and presents a fuzzy logic controller for admission control.

With the revolutionary technology of WiMAX, the lives of many will undoubtedly improve, thereby leading to greater economic empowerment.
Preface vii
Editors xi
Contributors xiii
Part I Technologies
1. Design of Baseband Processors for WiMAX Systems
3
Anders Nilsson and Dake Liu
1.1 Introduction
4
1.2 Baseband Processing Challenges
5
1.2.1 Multipath Propagation
5
1.2.2 Timing and Frequency Offset
5
1.2.3 Mobility
5
1.2.4 Noise and Burst Interference
6
1.2.4.1 Dynamic Range
6
1.2.4.2 Processing Latency
7
1.3 Programmable Baseband Processors
7
1.3.1 Multimode Systems
8
1.3.2 Dynamic MIPS Allocation
8
1.3.3 Hardware Multiplexing through Programmability
9
1.4 IEEE 802.16d Example
10
1.4.1 Introduction to OFDM
10
1.4.2 Processing Job Overview
11
1.5 Multistandard Processor Design
13
1.5.1 Complex Computing
13
1.5.2 Vector Computing
13
1.5.3 LeoCore Processor Overview
14
1.5.4 Single Instruction Issue
15
1.5.5 Execution Units
15
1.5.6 Memory Subsystem
16
1.5.7 Hardware Acceleration
17
1.5.8 FFT Acceleration
17
1.5.9 Typical Accelerators
18
1.5.9.1 Front-End Acceleration
18
1.5.9.2 Forward Error Correction
18
1.6 Conclusion
19
References
19
2. Fractal-Based Methodologies for WiMAX Antenna Synthesis
21
Renzo Azaro, Edoardo Zeni, Massimo Donelli, and Andrea Massa
2.1 Introduction
21
2.2 Fractal Antenna Properties
23
2.3 Synthesis of Fractal-Like Antennas
24
2.4 Synthesis and Optimization of Miniaturized and Multiband WiMAX Fractal Antennas
25
2.4.1 Synthesis and Optimization of a 3.5 GHz Miniaturized WiMAX Koch-Like Fractal Antenna
25
2.4.2 Synthesis and Optimization of a Dual-Band WiMAX Koch-Like Fractal Antenna
29
2.4.3 Synthesis and Optimization of a Dual-Band WiMAX Sierpinski-Like Fractal Antenna
32
2.4.4 Computational Issues of the PSO-Based Synthesis Procedure
35
2.5 Conclusions
36
References
37
3. Space–Time Coding and Application in WiMAX
41
Naofal Al-Dhahir, Robert Calderbank, Jimmy Chui, Sushanta Das, and Suhas Diggavi
3.1 Introduction
42
3.2 Space-Time Codes: A Primer
44
3.2.1 System Model: Quasi-Static Rayleigh Fading Channel
44
3.2.2 Diversity Gain and Coding Gain
45
3.2.3 Trade-Offs between Diversity and Rate
47
3.2.3.1 Trade-Off for Fixed Constellations
47
3.2.3.2 Diversity-Multiplexing Trade-Off
48
3.2.4 The ISI Channel
48
3.3 Space-Time Block Codes
49
3.3.1 Spatial Multiplexing
49
3.3.2 The Alamouti Code
50
3.3.3 The Golden Code
52
3.3.4 Other Space-Time Block Codes
53
3.4 Application of Space-Time Coding in WiMAX
54
3.4.1 Space-Time Coding in OFDM
54
3.4.2 Channel Estimation
54
3.4.3 A Differential Alamouti Code
55
3.5 A Novel Quaternionic Space-Time Block Code
56
3.5.1 Code Construction
56
3.5.2 Coherent Maximum Likelihood Decoding
57
3.5.3 An Efficient Decoder
58
3.5.4 A Differential Quaternionic Code
58
3.6 Simulation Results
59
Appendix: Quaternions
62
References
65
4. Exploiting Diversity in MIMO-OFDM Systems for Broadband Wireless Communications
69
Weifeng Su, Zoltan Safar, and K.J. Ray Liu
4.1 Introduction
69
4.2 MIMO-OFDM System Model and Code Design Criteria
72
4.2.1 System Model
72
4.2.2 Code Design Criteria
73
4.3 Full-Diversity SF Codes Design
76
4.3.1 Obtaining Full-Diversity SF Codes from ST Codes via Mapping
76
4.3.2 Full-Rate and Full-Diversity SF Code Design
78
4.4 Full-Diversity STF Code Design
82
4.4.1 Repetition-Coded STF Code Design
82
4.4.2 Full-Rate Full-Diversity STF Code Design
84
4.5 Simulation Results
86
4.6 Conclusion
91
References
93
Part II Performance Analysis
5. Performance Analysis of IEEE 802.16 Fixed Broadband Wireless Access Systems
97
R. Jayaparvathy and McNeil Ivan
5.1 Introduction
97
5.2 QoS Features of IEEE 802.16
99
5.3 System Model
100
5.4 Performance Analysis
101
5.4.1 G/M/1 Queuing Model
102
5.4.2 Functional Equation
102
5.4.3 Power-Tail Distributions
103
5.4.4 The Fitting Algorithm
104
5.4.5 Throughput of a Class of Traffic
107
5.4.6 Simulation Model
108
5.5 Results and Discussion
109
5.6 Conclusions and Future Work
115
References
116
6. System Performance Analysis for the Mesh Mode of IEEE 802.16
119
Min Cao and Qian Zhang
6.1 Introduction
119
6.2 Overview of IEEE 802.16 Mesh Mode
121
6.3 Performance Analysis of IEEE 802.16 Distributed Scheduler
126
6.3.1 Model and Approach
126
6.3.2 Collocated Scenario
127
6.3.2.1 Identical Holdoff Exponent
127
6.3.2.2 Nonidentical Holdoff Exponents
131
6.3.3 General Topology Scenario
134
6.3.4 Performance Metrics Estimation
134
6.4 Evaluation
135
6.4.1 Simulation Methodology
136
6.4.2 Numerical Results
138
6.4.2.1 Transmission Interval
138
6.4.2.2 Three-Way Handshaking Time
139
6.4.2.3 General Topology Scenario
141
6.5 Conclusion
142
References
143
7. Performance Analysis and Simulation Results under Mobile Environments
145
Mishal Algharabally and Pankaj Das
7.1 Introduction
145
7.2 System Model
146
7.3 Performance Analysis
149
7.3.1 Single-Input-Single-Output (SISO) Systems
149
7.3.2 Space-Time-Block-Coded (STBC) System
156
7.4 Numerical and Simulation Results
163
7.5 Conclusion
168
References
169
Part III QoS
8. IEEE 802.16 Multiple Access Control: Resources Allocation for Reservation-Based Traffic
173
Ahmed Doha and Hossam Hassanein
8.1 Introduction
174
8.2 Multiple Access Protocol of the IEEE 802.16 Standard: Overview
176
8.2.1 Downlink Broadcast
177
8.2.2 Uplink Multiple Access
177
8.2.3 Reservation Request and Bandwidth Allocation
179
8.2.4 Contention Resolution Mechanism
179
8.3 Motivation
179
8.4 Related Work
181
8.4.1 Reservation Multiple Access Protocols
181
8.4.2 Performance Evaluation of R-MAC Protocols
182
8.4.3 Reservation Period Allocation Techniques
183
8.5 Reservation Period Allocation Controller: Framework
185
8.5.1 Input Information
186
8.5.2 Optimized Controller Design
186
8.6 Implementation of the Reservation Period Allocation Controller
187
8.6.1 Input Information Realization
187
8.6.2 Optimized Controller
187
8.7 MDP Optimization Model
188
8.7.1 Model Assumptions
189
8.7.2 Frame Markov Chain
190
8.7.3 Contention Period Markov Chain
190
8.7.4 Optimization Problem Formulation
192
8.7.5 Reward Function
194
8.7.5.1 Delay Objective Function
194
8.7.5.2 Throughput Objective Function
196
8.7.6 Implementation Complexity
198
8.7.7 Operation of the Optimized Controller
198
8.8 Performance Evaluation
199
8.8.1 Slotted Aloha Contention Resolution
199
8.8.2 p-Persistence Contention Resolution
201
8.9 Conclusions
207
References
207
9. Scheduling Algorithms for OFDMA-Based WiMAX Systems with QoS Constraints
211
Raj Iyengar, Koushik Kar, Biplab Sikdar, and Xiang Luo
9.1 Introduction
212
9.1.1 Contributions
213
9.1.2 Organization of This
Chapter
213
9.2 System Model
214
9.2.1 Frequency Diverse and Frequency Selective Scheduling
215
9.2.2 Notion of Slot at Physical Layer
215
9.2.3 Channel Quality Indication
215
9.2.4 UGS and rtPS QoS Classes
216
9.3 Problem Formulation: Frequency and Time Allocation with QoS Constraints
216
9.3.1 Identical Channel Conditions
218
9.3.2 Choice of T
219
9.3.3 Hardness Result
219
9.3.4 An Input-Dependent Approximation Algorithm for LP(1)
220
9.3.5 A Heuristic Approach Based on Maximum Concurrent Flow
221
9.3.6 Numerical Results
223
9.4 Joint Channel and Power Allocation
224
9.4.1 Throughput Analysis in the High SINR Regime
227
9.4.2 Throughput Analysis in the Low SINR Regime
229
9.4.3 Performance Evaluation
230
9.5 Summary and Open Problems
232
9.5.1 Summary
232
9.5.2 Open Problems
233
References
233
10. Resource Allocation and Admission Control Using Fuzzy Logic for OFDMA-Based IEEE 802.16 Broadband Wireless Networks
235
Dusit Niyato and Ekram Hossain
10.1 Introduction
236
10.2 Related Work
238
10.3 Fuzzy Logic
240
10.3.1 Introduction
240
10.3.2 Fuzzy Set
240
10.3.3 Fuzzy Operation
241
10.3.4 Fuzzy Rule
242
10.3.5 Fuzzy Logic Control
242
10.4 WiMAX System Model
244
10.5 Queueing Formulation
245
10.5.1 Traffic Source and Arrival Probability Matrix
245
10.5.2 Transmission in the Subchannels
246
10.5.3 State Space and Transition Matrix
247
10.5.4 QoS Measures
249
10.5.4.1 Average Number of PDUs in Queue
249
10.5.4.2 PDU Dropping Probability
249
10.5.4.3 Queue Throughput
250
10.5.4.4 Average Delay
250
10.6 Fuzzy Logic Controller for Admission Control
250
10.7 Performance Evaluation
254
10.7.1 Parameter Setting
254
10.7.2 Numerical and Simulation Results
257
10.7.2.1 Queueing Performances and Observations
257
10.7.2.2 Performances of Fuzzy Logic Admission Control
257
10.8 Summary
263
Acknowledgments
263
References
263
Index 267


Motorola Inc., Plantation, Florida, USA Florida Atlantic University, Boca Raton, USA