Muutke küpsiste eelistusi

E-raamat: Wind Energy Handbook

(Wind Energy Consultant, Carno, Powys), (Garrad Hassan Partners, Bristol), (CREST, Loughborough University), (Cardiff University)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-May-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119992721
  • Formaat - PDF+DRM
  • Hind: 124,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-May-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119992721

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Named as one of Choice's Outstanding Academic Titles of 2012 Every year, Choice subject editors recognise the most significant print and electronic works reviewed in Choice during the previous calendar year. Appearing annually in Choice's January issue, this prestigious list of publications reflects the best in scholarly titles and attracts extraordinary attention from the academic library community. The authoritative reference on wind energy, now fully revised and updated to include offshore wind power

A decade on from its first release, the Wind Energy Handbook, Second Edition, reflects the advances in technology underpinning the continued expansion of the global wind power sector. Harnessing their collective industrial and academic expertise, the authors provide a comprehensive introduction to wind turbine design and wind farm planning for onshore and offshore wind-powered electricity generation.

The major change since the first edition is the addition of a new chapter on offshore wind turbines and offshore wind farm development. Opening with a survey of the present state of offshore wind farm development, the chapter goes on to consider resource assessment and array losses. Then wave loading on support structures is examined in depth, including wind and wave load combinations and descriptions of applicable wave theories. After sections covering optimum machine size and offshore turbine reliability, the different types of support structure deployed to date are described in turn, with emphasis on monopiles, including fatigue analysis in the frequency domain. Final sections examine the assessment of environmental impacts and the design of the power collection and transmission cable network.

New coverage features:





turbulence models updated to reflect the latest design standards, including an introduction to the Mann turbulence model extended treatment of horizontal axis wind turbines aerodynamics, now including a survey of wind turbine aerofoils, dynamic stall and computational fluid dynamics developments in turbine design codes techniques for extrapolating extreme loads from simulation results an introduction to the NREL cost model comparison of options for variable speed operation in-depth treatment of individual blade pitch control grid code requirements and the principles governing the connection of large wind farms to transmission networks four pages of full-colour pictures that illustrate blade manufacture, turbine construction and offshore support structure installation

Firmly established as an essential reference, Wind Energy Handbook, Second Edition will prove a real asset to engineers, turbine designers and wind energy consultants both in industry and research. Advanced engineering students and new entrants to the wind energy sector will also find it an invaluable resource.

Arvustused

"I highly recommend the classic and definitive reference book Wind Energy Handbook, Second Edition by Tony Burton, Nick Jenkins, David Sharpe, and Ervin Bossanyi, to any engineering students in undergraduate or graduate studies, teaching academics, practicing engineers, business leaders in technology or electrical utilities, and government policy makers seeking a complete and authoritative overview of design, manufacturing, and installation of horizontal axis wind turbines. This book offers a complete survey of the field, and contains an important section on wind farms as well. Overall, this is a very important and essential addition to any study or practice in the field." (Blog Business World, 19 February 2012)

"If libraries wish to acquire just one book on wind energy, this title is a very good candidate. Summing Up: Highly recommended. Upper-division undergraduates, graduate students, two-year technical program students, researchers/faulty, technicians/professionals, and informed general readers." (Choice, 1 December 2011)

 

About the Authors xvii
Preface to Second Edition xix
Acknowledgements for First Edition xxi
Acknowledgements for Second Edition xxiii
List of Symbols
xxv
Figures C1 and C2 --- Co-ordinate Systems
xxxv
1 Introduction
1(8)
1.1 Historical development
1(3)
1.2 Modern wind turbines
4(2)
1.3 Scope of the book
6(3)
References
7(1)
Further reading
8(1)
2 The wind resource
9(30)
2.1 The nature of the wind
9(1)
2.2 Geographical variation in the wind resource
10(1)
2.3 Long-term wind speed variations
11(1)
2.4 Annual and seasonal variations
12(2)
2.5 Synoptic and diurnal variations
14(1)
2.6 Turbulence
14(14)
2.6.1 The nature of turbulence
14(2)
2.6.2 The boundary layer
16(2)
2.6.3 Turbulence intensity
18(2)
2.6.4 Turbulence spectra
20(2)
2.6.5 Length scales and other parameters
22(2)
2.6.6 Asymptotic limits
24(1)
2.6.7 Cross-spectra and coherence functions
25(3)
2.6.8 The Mann model of turbulence
28(1)
2.7 Gust wind speeds
28(1)
2.8 Extreme wind speeds
29(3)
2.8.1 Extreme winds in standards
30(2)
2.9 Wind speed prediction and forecasting
32(1)
2.9.1 Statistical methods
32(1)
2.9.2 Meteorological methods
33(1)
2.10 Turbulence in wakes and wind farms
33(3)
2.11 Turbulence in complex terrain
36(3)
References
36(3)
3 Aerodynamics of horizontal axis wind turbines
39(81)
3.1 Introduction
39(1)
3.2 The actuator disc concept
40(4)
3.2.1 Simple momentum theory
41(1)
3.2.2 Power coefficient
42(1)
3.2.3 The Lanchester-Betz limit
43(1)
3.2.4 The thrust coefficient
43(1)
3.3 Rotor disc theory
44(5)
3.3.1 Wake rotation
44(2)
3.3.2 Angular momentum theory
46(2)
3.3.3 Maximum power
48(1)
3.4 Vortex cylinder model of the actuator disc
49(8)
3.4.1 Introduction
49(1)
3.4.2 Vortex cylinder theory
50(1)
3.4.3 Relationship between bound circulation and the induced velocity
51(1)
3.4.4 Root vortex
51(2)
3.4.5 Torque and power
53(1)
3.4.6 Axial flow field
53(1)
3.4.7 Tangential flow field
53(2)
3.4.8 Axial thrust
55(1)
3.4.9 Radial flow field
56(1)
3.4.10 Conclusions
57(1)
3.5 Rotor blade theory (blade-element/momentum theory)
57(7)
3.5.1 Introduction
57(1)
3.5.2 Blade element theory
57(2)
3.5.3 The blade-element/momentum (BEM) theory
59(3)
3.5.4 Determination of rotor torque and power
62(2)
3.6 Breakdown of the momentum theory
64(2)
3.6.1 Free-stream/wake mixing
64(1)
3.6.2 Modification of rotor thrust caused by flow separation
64(1)
3.6.3 Empirical determination of thrust coefficient
65(1)
3.7 Blade geometry
66(9)
3.7.1 Introduction
66(1)
3.7.2 Optimal design for variable speed operation
66(4)
3.7.3 A simple blade design
70(3)
3.7.4 Effects of drag on optimal blade design
73(1)
3.7.5 Optimal blade design for constant speed operation
74(1)
3.8 The effects of a discrete number of blades
75(17)
3.8.1 Introduction
75(1)
3.8.2 Tip-losses
75(6)
3.8.3 Prandtl's approximation for the tip-loss factor
81(2)
3.8.4 Blade root losses
83(2)
3.8.5 Effect of tip-loss on optimum blade design and power
85(3)
3.8.6 Incorporation of tip-loss for non-optimal operation
88(1)
3.8.7 Alternative explanation for tip-loss
89(3)
3.9 Stall delay
92(3)
3.10 Calculated results for an actual turbine
95(2)
3.11 The performance curves
97(4)
3.11.1 Introduction
97(1)
3.11.2 The CP - λ performance curve
98(1)
3.11.3 The effect of solidity on performance
98(2)
3.11.4 The CQ - λ curve
100(1)
3.11.5 The CT - λ curve
101(1)
3.12 Constant rotational speed operation
101(4)
3.12.1 Introduction
101(1)
3.12.2 The KP - 1/λ curve
101(1)
3.12.3 Stall regulation
102(1)
3.12.4 Effect of rotational speed change
103(2)
3.12.5 Effect of blade pitch angle change
105(1)
3.13 Pitch regulation
105(2)
3.13.1 Introduction
105(1)
3.13.2 Pitching to stall
106(1)
3.13.3 Pitching to feather
106(1)
3.14 Comparison of measured with theoretical performance
107(1)
3.15 Variable speed operation
108(1)
3.16 Estimation of energy capture
109(5)
3.17 Wind turbine aerofoil design
114(6)
3.17.1 Introduction
114(1)
3.17.2 The NREL aerofoils
114(2)
3.17.3 The Risø aerofoils
116(1)
3.17.4 The Delft aerofoils
117(2)
References
119(1)
Websites
120(1)
Further reading
120(1)
Appendix A3 lift and drag of aerofoils
120(188)
A3.1 Definition of drag
121(2)
A3.2 Drag coefficient
123(1)
A3.3 The boundary layer
124(1)
A3.4 Boundary layer separation
124(1)
A3.5 Laminar and turbulent boundary layers
125(2)
A3.6 Definition of lift and its relationship to circulation
127(3)
A3.7 The stalled aerofoil
130(1)
A3.8 The lift coefficient
131(1)
A3.9 Aerofoil drag characteristics
131(3)
A3.10 Cambered aerofoils
134(3)
4 Further aerodynamic topics for wind turbines
137(56)
4.1 Introduction
137(1)
4.2 The aerodynamics of turbines in steady yaw
137(26)
4.2.1 Momentum theory for a turbine rotor in steady yaw
138(2)
4.2.2 Glauert's momentum theory for the yawed rotor
140(4)
4.2.3 Vortex cylinder model of the yawed actuator disc
144(2)
4.2.4 Flow expansion
146(6)
4.2.5 Related theories
152(1)
4.2.6 Wake rotation for a turbine rotor in steady yaw
152(2)
4.2.7 The blade element theory for a turbine rotor in steady yaw
154(1)
4.2.8 The blade element --- momentum theory for a rotor in steady yaw
155(3)
4.2.9 Calculated values of induced velocity
158(5)
4.3 The method of acceleration potential
163(13)
4.3.1 Introduction
163(2)
4.3.2 The general pressure distribution theory of Kinner
165(3)
4.3.3 The axi-symmetric pressure distributions
168(3)
4.3.4 The anti-symmetric pressure distributions
171(3)
4.3.5 The Pitt and Peters model
174(1)
4.3.6 The general acceleration potential method
175(1)
4.3.7 Comparison of methods
175(1)
4.4 Unsteady flow
176(7)
4.4.1 Introduction
176(1)
4.4.2 Adaptation of the acceleration potential method to unsteady flow
177(3)
4.4.3 Unsteady yawing and tilting moments
180(3)
4.5 Quasi-steady aerofoil aerodynamics
183(6)
4.5.1 Introduction
183(1)
4.5.2 Aerodynamic forces caused by aerofoil acceleration
184(1)
4.5.3 The effect of the wake on aerofoil aerodynamics in unsteady flow
185(4)
4.6 Dynamic stall
189(1)
4.7 Computational fluid dynamics
190(3)
References
191(1)
Further reading
192(1)
5 Design loads for horizontal axis wind turbines
193(115)
5.1 National and international standards
193(1)
5.1.1 Historical development
193(1)
5.1.2 IEC 61400-1
193(1)
5.1.3 GL rules
194(1)
5.2 Basis for design loads
194(3)
5.2.1 Sources of loading
194(1)
5.2.2 Ultimate loads
195(1)
5.2.3 Fatigue loads
195(1)
5.2.4 Partial safety factors
195(2)
5.2.5 Functions of the control and safety systems
197(1)
5.3 Turbulence and wakes
197(2)
5.4 Extreme loads
199(6)
5.4.1 Operational load cases
199(3)
5.4.2 Non-operational load cases
202(2)
5.4.3 Blade/tower clearance
204(1)
5.4.4 Constrained stochastic simulation of wind gusts
204(1)
5.5 Fatigue loading
205(1)
5.5.1 Synthesis of fatigue load spectrum
205(1)
5.6 Stationary blade loading
205(8)
5.6.1 Lift and drag coefficients
205(1)
5.6.2 Critical configuration for different machine types
206(1)
5.6.3 Dynamic response
206(7)
5.7 Blade loads during operation
213(28)
5.7.1 Deterministic and stochastic load components
213(1)
5.7.2 Deterministic aerodynamic loads
213(9)
5.7.3 Gravity loads
222(1)
5.7.4 Deterministic inertia loads
222(3)
5.7.5 Stochastic aerodynamic loads: analysis in the frequency domain
225(10)
5.7.6 Stochastic aerodynamic loads: analysis in the time domain
235(3)
5.7.7 Extreme loads
238(3)
5.8 Blade dynamic response
241(26)
5.8.1 Modal analysis
241(3)
5.8.2 Mode shapes and frequencies
244(1)
5.8.3 Centrifugal stiffening
245(2)
5.8.4 Aerodynamic and structural damping
247(2)
5.8.5 Response to deterministic loads: step-by-step dynamic analysis
249(5)
5.8.6 Response to stochastic loads
254(2)
5.8.7 Response to simulated loads
256(1)
5.8.8 Teeter motion
256(5)
5.8.9 Tower coupling
261(5)
5.8.10 Aeroelastic stability
266(1)
5.9 Blade fatigue stresses
267(6)
5.9.1 Methodology for blade fatigue design
267(2)
5.9.2 Combination of deterministic and stochastic components
269(1)
5.9.3 Fatigue prediction in the frequency domain
269(2)
5.9.4 Wind simulation
271(1)
5.9.5 Fatigue cycle counting
272(1)
5.10 Hub and low speed shaft loading
273(4)
5.10.1 Introduction
273(1)
5.10.2 Deterministic aerodynamic loads
274(1)
5.10.3 Stochastic aerodynamic loads
275(1)
5.10.4 Gravity loading
276(1)
5.11 Nacelle loading
277(1)
5.11.1 Loadings from rotor
277(1)
5.11.2 Cladding loads
278(1)
5.12 Tower loading
278(10)
5.12.1 Extreme loads
278(1)
5.12.2 Dynamic response to extreme loads
279(3)
5.12.3 Operational loads due to steady wind (deterministic component)
282(1)
5.12.4 Operational loads due to turbulence (stochastic component)
283(2)
5.12.5 Dynamic response to operational loads
285(2)
5.12.6 Fatigue loads and stresses
287(1)
5.13 Wind turbine dynamic analysis codes
288(6)
5.14 Extrapolation of extreme loads from simulations
294(14)
5.14.1 Derivation of empirical cumulative distribution function of global extremes
295(1)
5.14.2 Fitting an extreme value distribution to the empirical distribution
296(5)
5.14.3 Comparison of extreme value distributions
301(1)
5.14.4 Combination of probability distributions
302(1)
5.14.5 Extrapolation
303(1)
5.14.6 Fitting probability distribution after aggregation
303(1)
5.14.7 Local extremes method
304(1)
5.14.8 Convergence requirements
305(1)
References
306(2)
Appendix 5 dynamic response of stationary blade in turbulent wind
308(301)
A5.1 Introduction
308(1)
A5.2 Frequency response function
309(1)
A5.2.1 Equation of motion
309(1)
A5.2.2 Frequency response function
309(1)
A5.3 Resonant displacement response ignoring wind variations along the blade
310(3)
A5.3.1 Linearisation of wind loading
310(1)
A5.3.2 First mode displacement response
311(1)
A5.3.3 Background and resonant response
311(2)
A5.4 Effect of across-wind turbulence distribution on resonant displacement response
313(3)
A5.4.1 Formula for normalised co-spectrum
314(2)
A5.5 Resonant root bending moment
316(2)
A5.6 Root bending moment background response
318(1)
A5.7 Peak response
319(3)
A5.8 Bending moments at intermediate blade positions
322(3)
A5.8.1 Background response
322(1)
A5.8.2 Resonant response
322(1)
References
323(2)
6 Conceptual design of horizontal axis wind turbines
325(58)
6.1 Introduction
325(1)
6.2 Rotor diameter
325(7)
6.2.1 Cost modelling
326(1)
6.2.2 Simplified cost model for machine size optimisation an illustration
326(3)
6.2.3 The NREL cost model
329(2)
6.2.4 Machine size growth
331(1)
6.2.5 Gravity limitations
332(1)
6.3 Machine rating
332(4)
6.3.1 Simplified cost model for optimising machine rating in relation to diameter
332(2)
6.3.2 Relationship between optimum rated wind speed and annual mean
334(1)
6.3.3 Specific power of production machines
335(1)
6.4 Rotational speed
336(2)
6.4.1 Ideal relationship between rotational speed and solidity
336(1)
6.4.2 Influence of rotational speed on blade weight
337(1)
6.4.3 Optimum rotational speed
338(1)
6.4.4 Noise constraint on rotational speed
338(1)
6.4.5 Visual considerations
338(1)
6.5 Number of blades
338(8)
6.5.1 Overview
338(1)
6.5.2 Ideal relationship between number of blades, rotational speed and solidity
339(1)
6.5.3 Some performance and cost comparisons
339(4)
6.5.4 Effect of number of blades on loads
343(2)
6.5.5 Noise constraint on rotational speed
345(1)
6.5.6 Visual appearance
345(1)
6.5.7 Single-bladed turbines
345(1)
6.6 Teetering
346(3)
6.6.1 Load relief benefits
346(1)
6.6.2 Limitation of large excursions
347(1)
6.6.3 Pitch-teeter coupling
348(1)
6.6.4 Teeter stability on stall-regulated machines
348(1)
6.7 Power control
349(7)
6.7.1 Passive stall control
349(1)
6.7.2 Active pitch control
349(5)
6.7.3 Passive pitch control
354(1)
6.7.4 Active stall control
354(1)
6.7.5 Yaw control
355(1)
6.8 Braking systems
356(2)
6.8.1 Independent braking systems: requirements of standards
356(1)
6.8.2 Aerodynamic brake options
356(2)
6.8.3 Mechanical brake options
358(1)
6.8.4 Parking versus idling
358(1)
6.9 Fixed speed, two speed or variable speed
358(7)
6.9.1 Two speed operation
359(1)
6.9.2 Variable slip operation (see also
Chapter 8, Section 8.3.8)
360(1)
6.9.3 Variable speed operation
361(2)
6.9.4 Other approaches to variable speed operation
363(2)
6.10 Type of generator
365(4)
6.10.1 Historical attempts to use synchronous generators
365(2)
6.10.2 Direct drive generators
367(1)
6.10.3 Evolution of generator systems
368(1)
6.11 Drive train mounting arrangement options
369(4)
6.11.1 Low speed shaft mounting
369(3)
6.11.2 High speed shaft and generator mounting
372(1)
6.12 Drive train compliance
373(2)
6.13 Rotor position with respect to tower
375(1)
6.13.1 Upwind configuration
375(1)
6.13.2 Downwind configuration
376(1)
6.14 Tower stiffness
376(3)
6.14.1 Stochastic thrust loading at blade passing frequency
376(2)
6.14.2 Tower top moment fluctuations due to blade pitch errors
378(1)
6.14.3 Tower top moment fluctuations due to rotor mass imbalance
378(1)
6.14.4 Tower stiffness categories
379(1)
6.15 Personnel safety and access issues
379(4)
References
381(2)
7 Component design
383(92)
7.1 Blades
383(36)
7.1.1 Introduction
383(1)
7.1.2 Aerodynamic design
384(1)
7.1.3 Practical modifications to optimum design
384(1)
7.1.4 Form of blade structure
385(1)
7.1.5 Blade materials and properties
386(4)
7.1.6 Properties of glass/polyester and glass/epoxy composites
390(5)
7.1.7 Properties of wood laminates
395(3)
7.1.8 Blade loading overview
398(11)
7.1.9 Blade resonance
409(5)
7.1.10 Design against buckling
414(4)
7.1.11 Blade root fixings
418(1)
7.2 Pitch bearings
419(3)
7.3 Rotor hub
422(3)
7.4 Gearbox
425(12)
7.4.1 Introduction
425(1)
7.4.2 Variable loading during operation
425(2)
7.4.3 Drive train dynamics
427(1)
7.4.4 Braking loads
427(2)
7.4.5 Effect of variable loading on fatigue design of gear teeth
429(3)
7.4.6 Effect of variable loading on fatigue design of bearings and shafts
432(1)
7.4.7 Gear arrangements
433(2)
7.4.8 Gearbox noise
435(1)
7.4.9 Integrated gearboxes
436(1)
7.4.10 Lubrication and cooling
436(1)
7.4.11 Gearbox efficiency
437(1)
7.5 Generator
437(9)
7.5.1 Fixed-speed induction generators
437(2)
7.5.2 Variable slip induction generators
439(1)
7.5.3 Variable speed operation
440(2)
7.5.4 Variable speed operation using a Doubly Fed Induction Generator (DFIG)
442(3)
7.5.5 Variable speed operation using a Full Power Converter (FPG)
445(1)
7.6 Mechanical brake
446(7)
7.6.1 Brake duty
446(1)
7.6.2 Factors governing brake design
447(1)
7.6.3 Calculation of brake disc temperature rise
448(2)
7.6.4 High speed shaft brake design
450(2)
7.6.5 Two level braking
452(1)
7.6.6 Low speed shaft brake design
453(1)
7.7 Nacelle bedplate
453(1)
7.8 Yaw drive
453(3)
7.9 Tower
456(11)
7.9.1 Introduction
456(1)
7.9.2 Constraints on first mode natural frequency
456(1)
7.9.3 Steel tubular towers
457(9)
7.9.4 Steel lattice towers
466(1)
7.10 Foundations
467(8)
7.10.1 Slab foundations
467(1)
7.10.2 Multi-pile foundations
468(1)
7.10.3 Concrete monopile foundations
468(1)
7.10.4 Foundations for steel lattice towers
469(1)
7.10.5 Foundation rotational stiffness
469(2)
References
471(4)
8 The controller
475(50)
8.1 Functions of the wind turbine controller
476(2)
8.1.1 Supervisory control
476(1)
8.1.2 Closed loop control
477(1)
8.1.3 The safety system
477(1)
8.2 Closed loop control: issues and objectives
478(6)
8.2.1 Pitch control (See also
Chapter 3, Section 3.13 and
Chapter 6, Section 6.7.2)
478(2)
8.2.2 Stall control
480(1)
8.2.3 Generator torque control (see also
Chapter 6, Section 6.9 and
Chapter 7, Section 7.5)
480(1)
8.2.4 Yaw control
481(1)
8.2.5 Influence of the controller on loads
481(1)
8.2.6 Defining controller objectives
482(1)
8.2.7 PI and PID controllers
483(1)
8.3 Closed loop control: general techniques
484(22)
8.3.1 Control of fixed speed, pitch regulated turbines
484(1)
8.3.2 Control of variable speed pitch regulated turbines
485(3)
8.3.3 Pitch control for variable speed turbines
488(1)
8.3.4 Switching between torque and pitch control
488(2)
8.3.5 Control of tower vibration
490(2)
8.3.6 Control of drive train torsional vibration
492(2)
8.3.7 Variable speed stall regulation
494(1)
8.3.8 Control of variable slip turbines
495(1)
8.3.9 Individual pitch control
496(1)
8.3.10 Multivariable control --- decoupling the wind turbine control loops
497(2)
8.3.11 Two-axis decoupling for individual pitch control
499(2)
8.3.12 Load reduction with individual pitch control
501(2)
8.3.13 Individual pitch control implementation
503(2)
8.3.14 Further extensions to individual pitch control
505(1)
8.3.15 Commercial use of individual pitch control
505(1)
8.3.16 Feedforward control using lidars
505(1)
8.4 Closed loop control: analytical design methods
506(12)
8.4.1 Classical design methods
506(5)
8.4.2 Gain scheduling for pitch controllers
511(1)
8.4.3 Adding more terms to the controller
511(1)
8.4.4 Other extensions to classical controllers
512(1)
8.4.5 Optimal feedback methods
513(3)
8.4.6 Pros and cons of model-based control methods
516(1)
8.4.7 Other methods
517(1)
8.5 Pitch actuators (see also,
Chapter 6 Section 6.7.2)
518(1)
8.6 Control system implementation
519(6)
8.6.1 Discretisation
520(1)
8.6.2 Integrator desaturation
521(1)
References
522(3)
9 Wind turbine installations and wind farms
525(40)
9.1 Project development
526(7)
9.1.1 Initial site selection
526(2)
9.1.2 Project feasibility assessment
528(1)
9.1.3 The Measure-Correlate-Predict (MCP) technique
529(1)
9.1.4 Micrositing
530(1)
9.1.5 Site investigations
530(1)
9.1.6 Public consultation
530(1)
9.1.7 Preparation and submission of the planning application
531(2)
9.2 Landscape and visual impact assessment
533(9)
9.2.1 Landscape character assessment
534(3)
9.2.2 Design and mitigation
537(1)
9.2.3 Assessment of impact
538(2)
9.2.4 Shadow flicker
540(1)
9.2.5 Sociological aspects
541(1)
9.3 Noise
542(9)
9.3.1 Terminology and basic concepts
542(4)
9.3.2 Wind turbine noise
546(2)
9.3.3 Measurement, prediction and assessment of wind farm noise
548(3)
9.4 Electromagnetic Interference
551(7)
9.4.1 Modelling and prediction of EMI from wind turbines
553(4)
9.4.2 Aviation radar
557(1)
9.5 Ecological assessment
558(7)
9.5.1 Impact on birds
559(3)
References
562(3)
10 Wind energy and the electric power system
565(44)
10.1 Introduction
565(4)
10.1.1 The electric power system
565(1)
10.1.2 Electrical distribution networks
566(2)
10.1.3 Electrical generation and transmission systems
568(1)
10.2 Wind farm power collection systems
569(3)
10.3 Earthing (grounding) of wind farms
572(3)
10.4 Lightning protection
575(3)
10.5 Connection of wind generation to distribution networks
578(3)
10.6 Power system studies
581(1)
10.7 Power quality
582(8)
10.7.1 Voltage flicker
586(1)
10.7.2 Harmonics
587(2)
10.7.3 Measurement and assessment of power quality characteristics of grid connected wind turbines
589(1)
10.8 Electrical protection
590(8)
10.8.1 Wind farm and generator protection
592(2)
10.8.2 Islanding and self-excitation of induction generators
594(2)
10.8.3 Interface protection for wind turbines connected to distribution networks
596(2)
10.9 Distributed generation and the Grid Codes
598(4)
10.9.1 Grid Code --- continuous operation
599(1)
10.9.2 Grid Code --- voltage and power factor control
599(2)
10.9.3 Grid Code --- frequency response
601(1)
10.9.4 Grid Code --- fault ride through
601(1)
10.9.5 Synthetic inertia
602(1)
10.10 Wind energy and the generation system
602(7)
10.10.1 Capacity credit
603(1)
10.10.2 Wind power forecasting
604(3)
References
607(2)
Appendix A10 Simple calculations for the connection of wind turbines
609(114)
A10.1 The Per-unit system
609(1)
A10.2 Power flows, slow voltage variations and network losses
609(4)
11 Offshore wind turbines and wind farms
613(110)
11.1 Development of offshore wind energy
613(3)
11.2 The offshore wind resource
616(4)
11.2.1 The structure of winds offshore
616(1)
11.2.2 Site wind speed assessment
616(1)
11.2.3 Wakes and array losses in offshore wind farms
617(3)
11.3 Design loads
620(41)
11.3.1 International Standards
620(1)
11.3.2 Wind conditions
621(1)
11.3.3 Marine conditions
622(1)
11.3.4 Wave spectra
623(1)
11.3.5 Ultimate loads: operational load cases and accompanying wave climates
624(8)
11.3.6 Ultimate loads: non-operational load cases and accompanying wave climates
632(2)
11.3.7 Fatigue loads
634(2)
11.3.8 Wave theories
636(8)
11.3.9 Wave loading on support structure
644(13)
11.3.10 Constrained waves
657(3)
11.3.11 Analysis of support structure loads
660(1)
11.4 Machine size optimisation
661(2)
11.5 Reliability of offshore wind turbines
663(4)
11.6 Support structures
667(37)
11.6.1 Monopiles
667(7)
11.6.2 Monopile fatigue analysis in the frequency domain
674(16)
11.6.3 Gravity bases
690(5)
11.6.4 Jacket structures
695(7)
11.6.5 Tripod structures
702(1)
11.6.6 Tripile structures
702(2)
11.7 Environmental assessment of offshore wind farms
704(3)
11.8 Offshore power collection and transmission
707(10)
11.8.1 Offshore wind farm transmission
708(4)
11.8.2 Submarine AC cable systems
712(3)
11.8.3 HVDC transmission
715(2)
11.9 Operation and access
717(6)
References
719(4)
Appendix A11
723(6)
References for table A11.1
723(6)
Index 729
Tony Burton, Wind Energy Consultant, Powys, UK

Nick Jenkins, Cardiff University, UK

David Sharpe, Wind Energy Consultant, Essex, UK

Ervin Bossanyi, GL Garrad Hassan, Bristol, UK