Muutke küpsiste eelistusi

E-raamat: Wind Energy Modeling and Simulation: Turbine and system, Volume 2

Edited by (National Renewable Energy Laboratory, National Wind Technology Center, USA)
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 04-Dec-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785615245
  • Formaat - EPUB+DRM
  • Hind: 214,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 04-Dec-2019
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785615245

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In order to optimise the yield of wind power from existing and future wind plants, the entire breadth of the system of a plant, from the wind field to the turbine components, needs to be modelled in the design process. The modelling and simulation approaches used in each subsystem as well as the system-wide solution methods to optimize across subsystem boundaries are described in this reference. Chapters are written by technical experts in each field, describing the current state of the art in modelling and simulation for wind plant design. This comprehensive, two-volume research reference will provide long-lasting insight into the methods that will need to be developed for the technology to advance into its next generation.



Volume 2 covers turbine level aerodynamics, aeroelasticity, rotors drivetrains and electrical systems, wind turbine control, offshore foundations, system optimization, and grid modelling.
Preface xv
List of acronyms xxvii
1 Aerodynamics: turning wind into mechanical motion 1(24)
Martin O.L. Hansen
1.1 Introduction
1(4)
1.2 Steady blade element momentum method
5(5)
1.3 Unsteady BEM
10(7)
1.4 Lifting line model and explaining Prandtl's tip-loss correction
17(4)
1.5 Limitations to the simpler aerodynamic models
21(1)
References
22(3)
2 Wind turbine aero-servo-elasticity and dynamics 25(48)
Morten Hartvig Hansen
2.1 Aero-servo-elastic modeling
26(11)
2.1.1 Nonlinear equations of motion
26(3)
2.1.2 Structural dissipation
29(1)
2.1.3 Generalized forces
30(4)
2.1.4 Aero-servo-elastic state-space model
34(2)
2.1.5 Existing codes
36(1)
2.2 Modal dynamics
37(13)
2.2.1 Linear equation of structural motion
37(1)
2.2.2 Modal dynamics of 2- and 3-bladed turbines
38(12)
2.3 Aeroelastic stability
50(19)
2.3.1 Linear aeroelastic equations of motion
51(1)
2.3.2 Aerodynamic damping
52(6)
2.3.3 Classical flutter
58(11)
References
69(4)
3 Rotor design and analysis 73(24)
Carlo L. Bottasso
Pietro Bortolotti
3.1 The design process
73(2)
3.1.1 Goals and requirements
74(1)
3.1.2 Certification standards
74(1)
3.2 Simulation models
75(7)
3.2.1 Aeroservoelastic models
75(6)
3.2.2 FEM models
81(1)
3.2.3 Quantification of uncertainties
82(1)
3.3 Multidisciplinary design optimization
82(8)
3.3.1 Figures of merit and cost models
83(1)
3.3.2 Aerodynamic blade design
84(1)
3.3.3 Structural design
85(4)
3.3.4 Aero-structural design
89(1)
3.4 Applications
90(3)
3.4.1 Design of a reference onshore wind turbine
90(1)
3.4.2 Investigation of passive load alleviation methods
91(1)
3.4.3 Design of a reference offshore wind turbine rotor
92(1)
Acknowledgment
93(1)
References
93(4)
4 Drivetrain analysis for reliable design 97(28)
Zhiwei Zhang
Yi Guo
Christopher K. Baker
4.1 Introduction
97(4)
4.2 Gearbox
101(18)
4.2.1 Common reliability issues and system design overview
101(2)
4.2.2 Design requirements
103(6)
4.2.3 Design certification
109(1)
4.2.4 Design for robustness and manufacturing
109(1)
4.2.5 Static strength rating and life modelling
110(4)
4.2.6 Dynamics modelling
114(5)
4.3 Main shaft and bearing
119(2)
4.3.1 Modelling for design
121(1)
4.4 Summary
121(1)
Acknowledgement
122(1)
References
122(3)
5 Offshore turbines with bottom-fixed or floating substructures 125(44)
Denis Matha
Frank Lemmer
Michael Muskulus
5.1 Introduction
125(7)
5.1.1 Offshore substructures
125(1)
5.1.2 General introduction into modeling of substructures in offshore wind
126(1)
5.1.3 Interfaces
127(1)
5.1.4 Modeling of hydrodynamic loads
128(2)
5.1.5 Coupling schemes
130(1)
5.1.6 Practical modeling challenges
131(1)
5.2 Ocean wave modeling
132(9)
5.2.1 Statistical descriptions
134(1)
5.2.2 Potential flow models
134(1)
5.2.3 Linear wave theory
135(1)
5.2.4 Frequency-domain representation
136(1)
5.2.5 Nonlinear wave theories
137(1)
5.2.6 Computational fluid dynamics approaches
137(1)
5.2.7 Breaking waves
138(1)
5.2.8 Extreme waves
139(1)
5.2.9 Typhoons and hurricanes
140(1)
5.2.10 Directional spreading
140(1)
5.2.11 Currents
141(1)
5.3 Wave-structure interaction
141(20)
5.3.1 Hydrostatics
142(2)
5.3.2 Fixed structures
144(1)
5.3.3 Floating structures: linear theory
145(5)
5.3.4 Morison's equation
150(1)
5.3.5 Identification from model tests
151(2)
5.3.6 Hydro-elasticity
153(1)
5.3.7 Wave overtopping and green water
153(1)
5.3.8 Mooring system interaction
153(5)
5.3.9 Representation of viscous effects
158(1)
5.3.10 Vortex-induced vibrations
159(1)
5.3.11 Ringing
159(1)
5.3.12 Wave-soil interaction/erosion
160(1)
5.3.13 Ice-structure interaction
160(1)
5.4 Limitations and current developments
161(1)
References
162(7)
6 Wind turbine control design 169(66)
Alan Wright
Paul Fleming
Andrew Scholbrock
Kathryn Johnson
Lucy Pao
Jan-Willem van Wingerden
6.1 Wind turbine controls introduction
169(6)
6.1.1 Overview
169(2)
6.1.2 Sensors and actuators
171(1)
6.1.3 Operating regions
171(2)
6.1.4 Feedback control loops
173(2)
6.2 Modeling for controller development
175(7)
6.2.1 Control development process overview
175(2)
6.2.2 Detailed simulation model
177(3)
6.2.3 Simulation cases
180(2)
6.3 Basic operational controller design
182(9)
6.3.1 Step 1: Define controller objectives
182(1)
6.3.2 Steps 2 and 3: Develop simplified dynamic models and synthesize controller
182(5)
6.3.3 Step 4: Simulate controller performance
187(4)
6.4 Advanced controller design methods
191(16)
6.4.1 Linear state-space models
192(1)
6.4.2 Multivariable state-space control design methods
193(8)
6.4.3 State-estimator-based controller development example
201(6)
6.5 Special topics
207(21)
6.5.1 Lidar feedforward controls
207(9)
6.5.2 Individual blade pitch control
216(2)
6.5.3 "Smart" rotor control
218(4)
6.5.4 Control of offshore floating turbines
222(6)
6.6 Summary
228(1)
Acknowledgment
228(1)
References
228(7)
7 Systems engineering and optimization of wind turbines and power plants 235(58)
Andrew Ning
Katherine Dykes
Julian Quick
7.1 Introduction
235(1)
7.2 Optimization-based design
236(7)
7.2.1 From analysis to optimization
236(1)
7.2.2 From traditional design to optimization-driven design
237(1)
7.2.3 From single-disciplinary to multidisciplinary optimization
238(3)
7.2.4 Additional complexity: discrete variables, multiple objectives, decisions over time, and uncertainty
241(2)
7.3 Wind turbine design optimization
243(15)
7.3.1 Unique challenges for wind turbine optimization
244(8)
7.3.2 Higher fidelity approaches and unsteady aeroelastic modeling
252(3)
7.3.3 Research and industry applications of wind turbine optimization
255(3)
7.4 Wind power plant design optimization
258(18)
7.4.1 Unique challenges of wind power plant optimization
259(11)
7.4.2 Higher fidelity approaches and addressing uncertainty
270(4)
7.4.3 Research and industry applications of wind power plant optimization
274(2)
7.5 Managing the design process: standards, frameworks, and data management
276(3)
7.6 Conclusions
279(1)
Acknowledgment
280(1)
References
280(13)
8 Wind plant electrical systems: electrical generation, machines, power electronics, and collector systems 293(36)
Eduard Muljadi
Robert Mark Nelms
Vahan Gevorgian
8.1 Introduction
293(2)
8.2 Wind energy conversion
295(3)
8.3 Types of wind-turbine generator
298(15)
8.3.1 Type 1-fixed-speed wind-turbine generator
299(4)
8.3.2 Type 2-variable-slip wind-turbine generator
303(3)
8.3.3 Type 3-variable-speed wind-turbine generator
306(5)
8.3.4 Type 4-full-conversion wind-turbine generator
311(2)
8.4 Collector systems (5 pages)
313(4)
8.4.1 General overview and assumptions
313(1)
8.4.2 Connection at the trunk line level
314(1)
8.4.3 Shunt representation
315(2)
8.4.4 Pad mount transformer representation
317(1)
8.5 Power plant
317(10)
8.5.1 System integration
317(3)
8.5.2 Wind power plant
320(1)
8.5.3 Summary of SCC contribution for different types of WTG
321(1)
8.5.4 Generator interconnection
322(5)
8.6 Appendix I (from [ 10])
327(1)
Acknowledgment
327(1)
References
328(1)
9 Grid modeling with wind plants 329(44)
Nicholas W. Miller
9.1 Modeling the regional/national/international grid with wind plants
329(3)
9.1.1 Introduction/Overview
329(1)
9.1.2 Modeling objectives: study design and priorities
329(1)
9.1.3 Lessons learned
330(2)
9.2 Bulk power systems
332(6)
9.2.1 Bulk-power-system operations
332(1)
9.2.2 Bulk-power-system planning
333(1)
9.2.3 Renewable integration study design
334(1)
9.2.4 Analytical methods
335(3)
9.3 Scenario development: preparatory stage
338(13)
9.3.1 Scenario development overview
338(2)
9.3.2 Wind and solar data: resource and location
340(1)
9.3.3 Existing system data
341(1)
9.3.4 Portfolio development
341(1)
9.3.5 Network scenarios
342(2)
9.3.6 Statistical analysis and reserves requirements
344(1)
9.3.7 Scenario examples
345(6)
9.4 Capacity-value analysis
351(1)
9.4.1 LOLE analysis
351(1)
9.4.2 System modeling assumptions for wind studies
351(1)
9.5 Hourly production simulation
352(9)
9.5.1 Hourly analysis overview
352(1)
9.5.2 General modeling assumptions
353(5)
9.5.3 Example production simulation results
358(2)
9.5.4 Sub-hourly production simulation
360(1)
9.6 Grid modeling and bulk system dynamics
361(5)
9.6.1 Loadflow and stability analysis
361(1)
9.6.2 Integration of wind plant models into grid databases
362(1)
9.6.3 Time-sequential static analysis
363(1)
9.6.4 Distribution system analysis
364(2)
9.7 Mitigation and synthesis
366(1)
9.7.1 Mitigation requirements and options
366(1)
9.7.2 Results synthesis
367(1)
9.8 Discussion and recommendations
367(2)
9.8.1 Data availability and importance
367(1)
9.8.2 Recommendations
368(1)
References
369(4)
Index 373
Paul Veers is the Chief Engineer at NREL's National Wind Technology Center. He has led research on wind energy systems, including atmospheric turbulence simulation, fatigue analysis, reliability, structural dynamics, aeroelastic tailoring of blades, and the evaluation of design requirements. Paul has authored over 70 articles, papers, book chapters, and reports, and for twelve years was the Chief Editor for Wind Energy.