Muutke küpsiste eelistusi

E-raamat: Wind Resource Assessment and Micro-siting: Science and Engineering

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 26-May-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118900130
  • Formaat - EPUB+DRM
  • Hind: 135,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 26-May-2015
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118900130

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Covers all the key areas of wind resource assessment technologies from an engineer’s perspective

  • Focuses on wind analysis for wind plant siting, design and analysis
  • Addresses all aspects from atmospheric boundary layer characteristics, to wind resource measurement systems, uncertainties in measurements, computations and analyses, to plant performance
  • Covers the basics of atmospheric science through to turbine siting, turbine responses, and to environmental impacts
  • Contents can be used for research purposes as well as a go-to reference guide, written from the perspective of a hands-on engineer
  • Topic is of ongoing major international interest for its economic and environmental benefits
Preface xiii
Introduction xv
Acknowledgments xvii
About the Author xix
List of Symbols xxi
1 Introduction 1(10)
1.1 Wind Resource Assessment as a Discipline
2(1)
1.2 Micro-siting Briefing
2(1)
1.3 Cascade of Wind Regime
3(4)
1.3.1 Global Scale Wind Regime
3(2)
1.3.2 Synoptic Scale Wind Regime
5(1)
1.3.3 Meso-scale Wind Regime
5(1)
1.3.4 Local Scale Wind Regime
6(1)
1.4 Uncertainty of Wind Resource
7(2)
1.5 Scope of the Book
9(1)
References
9(2)
2 Concepts and Analytical Tools 11(24)
2.1 Surface Roughness and Wind Profile
11(9)
2.1.1 Roughness Length
11(3)
2.1.2 Vertical Wind Profile
14(1)
2.1.3 Internal Boundary Layer
15(1)
2.1.4 Roughness Change Model
16(1)
2.1.5 Displacement Height
17(1)
2.1.6 Wind Shear
18(2)
2.2 Speed-up Effect of Terrain
20(8)
2.2.1 Horizontal Speed-up Profile
20(2)
2.2.2 Vertical Speed-up on Hill Top
22(2)
2.2.3 Orographic Categorisation of Terrain
24(3)
2.2.4 Ruggedness Index
27(1)
2.3 Shelter Effect of Obstacles
28(4)
2.3.1 Reduced Wind Speed
29(2)
2.3.2 Increased Turbulence Intensity
31(1)
2.4 Summary
32(1)
References
33(2)
3 Numerical Wind Flow Modelling 35(26)
3.1 Modelling Concept Review
36(6)
3.1.1 Wind Flow Concepts
36(1)
3.1.2 Governing Equations
37(4)
3.1.3 Meshing the Computational Domain
41(1)
3.2 Linearised Numerical Flow Models
42(8)
3.2.1 Jackson—Hunt Model
42(1)
3.2.2 WAsP Model: The Principle
43(3)
3.2.3 WAsP Model: Limitations
46(2)
3.2.4 WAsP Model: Improving the Results
48(2)
3.3 Mass-Consistent Models
50(1)
3.4 CFD Models
50(3)
3.4.1 Meteodyn WT and WindSim
51(1)
3.4.2 Validation of CFD models
52(1)
3.5 Meso Scale NWP Models
53(2)
3.6 Inherent Uncertainties in Wind Flow Modelling
55(1)
3.7 Summary
56(1)
References
56(5)
4 Wind Park Physics and Micro-siting 61(30)
4.1 Wind Power Density
61(2)
4.2 Wind Power Conversion
63(5)
4.2.1 Betz's Limit
63(2)
4.2.2 Power Coefficient
65(1)
4.2.3 Thrust Coefficient
65(1)
4.2.4 Wind Turbine Power Curve
66(1)
4.2.5 Power Curve Adjustment
67(1)
4.3 Wind Turbine Wake Effects
68(10)
4.3.1 Analytical Structure of Wake
68(2)
4.3.2 Reduced Velocity Wake Models
70(3)
4.3.3 Added Turbulence Wake Models
73(2)
4.3.4 Deep Array Wake Models
75(2)
4.3.5 Wake Effects in Complex Terrain
77(1)
4.4 Wind Turbine Micro-siting
78(9)
4.4.1 Park Efficiency
79(1)
4.4.2 Capacity Factor
80(1)
4.4.3 Site-Specific Wind Conditions
80(2)
4.4.4 Wind Turbine Selection
82(1)
4.4.5 Site Survey
83(3)
4.4.6 Wind Sector Management
86(1)
4.5 Summary
87(1)
References
87(4)
5 Wind Statistics 91(30)
5.1 Statistics Concepts Review
91(2)
5.1.1 Random Variables
91(1)
5.1.2 Sample Mean and Standard Deviation
92(1)
5.1.3 Probability Density Distribution
92(1)
5.2 Wind Data Time Series
93(6)
5.2.1 Mean Wind Speed
94(1)
5.2.2 Turbulence Intensity
95(2)
5.2.3 Wind Direction
97(2)
5.3 Mean Wind Speed of the Whole Time Series
99(1)
5.4 Weibull Distribution
100(4)
5.4.1 Weibull Probability Density Function
100(1)
5.4.2 Weibull Cumulative Distribution Function
101(2)
5.4.3 Rayleigh Distribution
103(1)
5.5 Estimating Weibull Parameters
104(6)
5.5.1 Linear Regression Method
104(1)
5.5.2 Mean-Standard Deviation Method
105(1)
5.5.3 Maximum Likelihood Estimate Method
105(1)
5.5.4 Medians Method
106(1)
5.5.5 Power Density Method
107(1)
5.5.6 Quality of the Weibull Fit
108(2)
5.6 Extreme Wind Statistics
110(8)
5.6.1 Independent Extreme Wind Events
110(1)
5.6.2 Gumbel Method
111(5)
5.6.3 Peaks-Over-Threshold Method
116(1)
5.6.4 Extreme Wind Gusts
117(1)
5.7 Summary
118(1)
References
118(3)
6 Measure—Correlate—Predict 121(22)
6.1 Wind Data Correlation
122(3)
6.1.1 Correlation Coefficient
122(1)
6.1.2 Physical Interpretations of the Correlation
122(1)
6.1.3 The Impact of Averaging Interval
123(2)
6.2 Wind Data Regression and Prediction
125(4)
6.2.1 Regression Equation and Residual
125(2)
6.2.2 Data Validation
127(1)
6.2.3 Data Resampling
128(1)
6.3 MCP Methodology for Wind Energy
129(6)
6.3.1 Linear Regression
129(1)
6.3.2 Variance Ratio Method
130(1)
6.3.3 Weibull Scale Method
131(1)
6.3.4 Mortimer Method
132(1)
6.3.5 WindPRO Matrix Method
132(2)
6.3.6 Artificial Neural Networks
134(1)
6.4 MCP Uncertainty
135(2)
6.4.1 Reducing MCP Uncertainty
135(1)
6.4.2 Estimating MCP Uncertainty
135(1)
6.4.3 Overlapping Period
136(1)
6.5 Sources of Reference Data
137(2)
6.5.1 Meteorological Stations
137(1)
6.5.2 Reanalysis Data
138(1)
6.6 Summary
139(1)
References
140(3)
7 Wind Park Production Estimate 143(26)
7.1 Gross and Net AEP
143(5)
7.1.1 Wake Losses
144(1)
7.1.2 Availability Losses
145(1)
7.1.3 Power Curve Performance
145(1)
7.1.4 Environmental Losses
146(1)
7.1.5 Electrical Losses
147(1)
7.1.6 Curtailments
147(1)
7.2 AEP Uncertainty Analysis
148(5)
7.2.1 Defining Uncertainty
148(2)
7.2.2 Combining Uncertainties
150(1)
7.2.3 From Wind Speed Uncertainty to AEP Uncertainty
151(1)
7.2.4 P90, P75 and P50 AEP
151(2)
7.3 Natural Variability of Wind
153(2)
7.3.1 Inter-Annual Wind Speed Variability
153(1)
7.3.2 Long-Term Stability of Windiness
154(1)
7.4 Uncertainty in Wind Measurement
155(1)
7.5 Uncertainty in Wind Flow Modelling
156(6)
7.5.1 Vertical Extrapolation
156(2)
7.5.2 Horizontal Extrapolation
158(1)
7.5.3 Wind Resource Similarity
159(1)
7.5.4 Deploying Multiple Masts
160(2)
7.6 A Case Study
162(1)
7.7 Wind Resource Assessment Report
163(2)
7.8 Summary
165(1)
References
166(3)
8 Measuring the Wind 169(32)
8.1 Representativeness of the Met Mast
169(4)
8.1.1 Similar Wind Climate
170(2)
8.1.2 Similar Topography
172(1)
8.1.3 Similar Shelter Effect
172(1)
8.2 Cup Anemometer Physics
173(6)
8.2.1 Horizontal Wind Speed
174(1)
8.2.2 Vertical Sensitivity
174(1)
8.2.3 Dynamic Response in Turbulent Winds
175(2)
8.2.4 Nonlinearity and Mechanical Friction
177(1)
8.2.5 Sheared Flow Effect
178(1)
8.2.6 Cup Anemometer Design
178(1)
8.3 Met Mast Installation
179(6)
8.3.1 Tower Shadow
179(2)
8.3.2 Boom and Ancillary Effect
181(1)
8.3.3 Wind Direction Vane
181(2)
8.3.4 Air Temperature and Other Parameters
183(1)
8.3.5 Good Practice
183(2)
8.4 Met Mast Operation and Maintenance
185(5)
8.4.1 Documentation
185(3)
8.4.2 On-Site Inspection
188(1)
8.4.3 Monitoring
189(1)
8.5 Data Validation
190(2)
8.5.1 Test Criteria
190(1)
8.5.2 Graphical Review
191(1)
8.5.3 Combining the Data
191(1)
8.5.4 Data Recovery Rate
192(1)
8.6 Alternative Wind Sensors
192(7)
8.6.1 Propeller Anemometer
192(1)
8.6.2 Sonic Anemometer
193(2)
8.6.3 Sodar
195(1)
8.6.4 Lidar
196(1)
8.6.5 Deploying Sodar and Lidar
197(2)
8.7 Summary
199(1)
References
200(1)
9 Atmospheric Circulation and Wind Systems 201(28)
9.1 General Concepts
201(5)
9.1.1 Vertical Structure of the Atmosphere
201(2)
9.1.2 Standard Atmosphere
203(1)
9.1.3 Geopotential Height and Sigma Height
203(1)
9.1.4 Cascade of Scales
204(2)
9.2 Laws and Driving Forces
206(4)
9.2.1 Equation of State
206(1)
9.2.2 Hydrostatic Equation
206(1)
9.2.3 Air Density
207(1)
9.2.4 Forces and Winds
208(2)
9.3 General Atmospheric Circulations
210(4)
9.3.1 Geostrophic Winds
210(1)
9.3.2 Baroclinic Atmosphere and Thermal Winds
211(1)
9.3.3 Three Cell Circulation
212(2)
9.4 Synoptic Scale Wind Systems
214(3)
9.4.1 Mid-latitude Cyclones and Anticyclones
214(1)
9.4.2 Weather Fronts
215(1)
9.4.3 Tropical Storms
216(1)
9.5 Meso-scale Wind Systems
217(5)
9.5.1 Convection and Thunderstorms
218(1)
9.5.2 Land and Sea Breezes
219(2)
9.5.3 Mountain and Valley Winds
221(1)
9.5.4 Katabatic Winds
222(1)
9.6 Micro-scale Winds
222(4)
9.6.1 Turbulence Kinetic Energy
223(1)
9.6.2 Turbulent Flux
224(1)
9.6.3 Turbulence Spectra
225(1)
9.7 Summary
226(1)
References
227(2)
10 Boundary Layer Winds 229(22)
10.1 Atmospheric Stability
229(5)
10.1.1 Neutral Stratification
230(1)
10.1.2 Unstable Stratification
230(1)
10.1.3 Stable Stratification
231(1)
10.1.4 Stability Parameter
231(1)
10.1.5 Modification on a Vertical Wind Profile
232(1)
10.1.6 Influence on Turbulence
233(1)
10.2 Orographic Effects
234(4)
10.2.1 Channelling of Wind
234(1)
10.2.2 Wind Speed-up and the Froude Number
235(3)
10.3 Onshore Boundary Layer Winds
238(5)
10.3.1 Surface Layer
238(1)
10.3.2 Ekman Layer
239(1)
10.3.3 Diurnal Variations
240(1)
10.3.4 Low-Level Jets
241(2)
10.3.5 Internal Boundary Layer
243(1)
10.4 Offshore Boundary Layer Winds
243(5)
10.4.1 Sea Surface Roughness and Wave Influence
244(1)
10.4.2 Marine Atmospheric Stability
245(1)
10.4.3 Annual and Diurnal Variations
245(1)
10.4.4 Offshore Turbulence Intensity
246(1)
10.4.5 Offshore Vertical Wind Profile
246(1)
10.4.6 Offshore Turbine Layout Optimisation
247(1)
10.5 Summary
248(1)
References
248(3)
11 Environmental Impact Assessment 251(16)
11.1 Biological Impacts
251(3)
11.1.1 Birds and Bats
252(1)
11.1.2 Terrestrial Animals
253(1)
11.1.3 Marine Animals
253(1)
11.1.4 Vegetation
254(1)
11.2 Visual Impacts
254(3)
11.2.1 Shadow Flicker
254(2)
11.2.2 Scenery and Aesthetics
256(1)
11.3 Noise Impacts
257(5)
11.3.1 Wind Turbine Noise Curve
257(2)
11.3.2 Sound Propagation
259(1)
11.3.3 Combining Sound Levels
259(2)
11.3.4 Evaluating Noise Levels
261(1)
11.4 Weather and Climate Change
262(2)
11.5 Public Health and Safety
264(1)
11.6 Summary
264(1)
References
265(2)
Appendix I Frequently Used Equations 267(2)
Appendix II IEC Classification of Wind Turbines 269(2)
Appendix III Climate Condition Survey for a Wind Farm 271(4)
Appendix IV Useful Websites and Database 275(2)
Index 277
Matthew Huaiquan Zhang, Independent Renewable Energy Consultant, China/ UK