Muutke küpsiste eelistusi

E-raamat: Wireless and Guided Wave Electromagnetics: Fundamentals and Applications

(European Research Center, Huawei Technologies, Munich, Germany)
  • Formaat: 406 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 12-Jul-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351833387
  • Formaat - EPUB+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 406 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 12-Jul-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351833387

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wireless communications allow high-speed mobile access to a global Internet based on ultra-wideband backbone intercontinental and terrestrial networks. Both of these environments support the carrying of information via electromagnetic waves that are wireless (in free air) or guided through optical fibers. Wireless and Guided Wave Electromagnetics: Fundamentals and Applications explores the fundamental aspects of electromagnetic waves in wireless media and wired guided media. This is an essential subject for engineers and physicists working with communication technologies, mobile networks, and optical communications.

This comprehensive book:





Builds from the basics to modern topics in electromagnetics for wireless and optical fiber communication Examines wireless radiation and the guiding of optical waves, which are crucial for carrying high-speed information in long-reach optical networking scenarios Explains the physical phenomena and practical aspects of guiding optical waves that may not require detailed electromagnetic solutions Explores applications of electromagnetic waves in optical communication systems and networks based on frequency domain transfer functions in the linear regions, which simplifies the physical complexity of the waves but still allows them to be examined from a system engineering perspective Uses MATLAB® and Simulink® models to simulate and illustrate the electromagnetic fields Includes worked examples, laboratory exercises, and problem sets to test understanding

The books modular structure makes it suitable for a variety of courses, for self-study, or as a resource for research and development. Throughout, the author emphasizes issues commonly faced by engineers. Going a step beyond traditional electromagnetics textbooks, this book highlights specific uses of electromagnetic waves with a focus on the wireless and optical technologies that are increasingly important for high-speed transmission over very long distances.

Arvustused

"The teaching and learning of electromagnetics have in recent years been profoundly influenced by the availability of simple experimental apparatus and very accurate simulation software. This book gives a detailed overview of the main application areas of electromagnetics especially tailored for electrical engineering students. In particular, the book covers a wide range of topics in electromagnetics ranging from guided waves to radiated waves." Malin Premaratne, Monash University, Clayton, Victoria, Australia

"This book merges a systematic rigorous mathematical approach with a solid and clear physical view of the electromagnetic phenomena. The book is structured in a very student-oriented way: the chapters can be introduced in different order according to the needs of students and/or instructors. ... an essential guide for engineers and/or practitioners." Prof. Ing. Antonio Orlandi, Dipartimento di Ingegneria Industriale e dell'Informazione e di Economia, University of LAquila, Rome, Italy "The teaching and learning of electromagnetics have in recent years been profoundly influenced by the availability of simple experimental apparatus and very accurate simulation software. This book gives a detailed overview of the main application areas of electromagnetics especially tailored for electrical engineering students. In particular, the book covers a wide range of topics in electromagnetics ranging from guided waves to radiated waves."Malin Premaratne, Monash University, Clayton, Victoria, Australia

"This book merges a systematic rigorous mathematical approach with a solid and clear physical view of the electromagnetic phenomena. The book is structured in a very student-oriented way: the chapters can be introduced in different order according to the needs of students and/or instructors. ... an essential guide for engineers and/or practitioners."Prof. Ing. Antonio Orlandi, Dipartimento di Ingegneria Industriale e dell'Informazione e di Economia, University of LAquila, Rome, Italy

Preface xv
Acknowledgments xix
About the Author xxi
Chapter 1 Electric and Magnetic Fields and Waves
1(18)
1.1 Brief Overview
1(1)
1.2 Wave Representation
1(4)
1.2.1 Overview
1(1)
1.2.2 General Property
2(1)
1.2.3 Waves by Phasor Representation
3(1)
1.2.4 Phase Velocity
4(1)
1.3 Maxwell's Equations
5(2)
1.3.1 Faraday's Law
5(1)
1.3.2 Ampere's Law
5(2)
1.3.3 Gauss's Law for Electric Field and Charges
7(1)
1.3.4 Gauss's Law for Magnetic Field
7(1)
1.4 Maxwell Equations in Dielectric Media
7(3)
1.4.1 Maxwell Equations
7(2)
1.4.2 Wave Equation
9(1)
1.4.3 Boundary Conditions
9(1)
1.4.4 Reciprocity Theorems
9(1)
1.5 Current Continuity
10(1)
1.6 Lossless TEM Waves
11(3)
1.7 Maxwell's Equations in Time-Harmonic and Phasor Forms
14(1)
1.8 Plane Waves
14(4)
1.8.1 General Wave Equations
14(2)
1.8.2 Time-Harmonic Wave Equation
16(2)
Reference
18(1)
Chapter 2 Electrical Transmission Lines
19(28)
2.1 Model of Time-Harmonic Waves on Transmission Lines
19(4)
2.1.1 Distributed Model of Transmission Lines
19(2)
2.1.2 Time-Harmonic Wavesion Transmission Lines
21(2)
2.2 Terminated Transmission Lines
23(4)
2.2.1 Terminated Line
23(1)
2.2.2 Reflection Coefficient
24(1)
2.2.3 Input Line Impedance
25(2)
2.3 Smith Chart
27(2)
2.4 Impedance Matching
29(3)
2.5 Equipment
32(5)
2.5.1 Apparatus
32(1)
2.5.2 Experimental Setup
33(1)
2.5.3 Notes on the Slotted Lines
33(1)
2.5.4 Experiment
33(2)
2.5.5 Time-Domain Reflectometry
35(2)
2.6 Concluding Remarks
37(1)
2.7 Problems
38(7)
2.7.1 Problem on TDR Operation on Transmission and Reflection
38(1)
2.7.2 Problem on Transmission Line
39(1)
2.7.3 Problem on Slotted Transmission Line Experiment
40(1)
2.7.4 Problems on Transmission Lines
40(5)
Reference
45(2)
Chapter 3 Antennae
47(32)
3.1 Introduction
47(7)
3.1.1 Differential Doublet and Dipole Antenna
49(1)
3.1.2 Far Field
50(1)
3.1.3 Near Field
51(1)
3.1.4 Linear Antenna Current Distribution
51(3)
3.2 Radiating Fields
54(10)
3.2.1 Radian Field of Hertzian Antenna
56(1)
3.2.2 Standing Wave Antenna: The Half-Wave Dipole Antenna
57(1)
3.2.3 Monopole Antenna
58(2)
3.2.4 Traveling Wave Antenna
60(1)
3.2.5 Omnidirectional Antenna
61(2)
3.2.6 Horn Waveguide Antenna
63(1)
3.3 Antenna Figure of Merit
64(2)
3.4 Experiment
66(3)
3.4.1 Background
66(2)
3.4.2 Measurement of the Monopole Antenna Admittance
68(1)
3.5 Concluding Remarks
69(1)
3.6 Appendix: Metallic Waveguide
69(7)
3.6.1 Brief Concept
69(5)
3.6.2 Experiment on Waveguide
74(2)
3.7 Problems
76(1)
3.7.1 Waveguide Measurements
76(1)
3.7.2 Antenna Admittance
76(1)
3.7.3 Waveguide
76(1)
References
77(2)
Chapter 4 Planar Optical Waveguides
79(74)
4.1 Introduction
79(2)
4.2 Formation of Planar Single-Mode Waveguide Problems
81(6)
4.2.1 TE/TM Wave Equation
82(5)
4.3 Approximate Analytical Methods of Solution
87(35)
4.3.1 Asymmetrical Waveguides
88(11)
4.3.2 Symmetrical Waveguides
99(22)
4.3.3 Concluding Remarks
121(1)
4.4 Design and Simulations of Planar Optical Waveguides: Experiments
122(7)
4.4.1 Introduction
122(1)
4.4.2 Theoretical Background
122(4)
4.4.3 Simulation of Optical Fields and Propagation in Slab Optical Waveguide Structures
126(3)
4.5 Appendix A: Exact Analysis of Clad Linear Optical Waveguides
129(4)
4.5.1 Asymmetrical Clad Linear Profile
129(3)
4.5.2 Symmetrical Waveguide
132(1)
4.6 Appendix B: WKB Method, Turning Points, and Connection Formulae
133(14)
4.6.1 Introduction
133(1)
4.6.2 Derivation of the WKB Approximate Solutions
133(3)
4.6.3 Turning Point Corrections
136(6)
4.6.4 Correction Formulae
142(2)
4.6.5 Application of Correction Formulae
144(3)
4.7 Problems
147(2)
4.7.1 Problem 1
147(1)
4.7.2 Problem 2
148(1)
4.7.3 Problem 3
148(1)
4.7.4 Problem 4
148(1)
References
149(4)
Chapter 5 Three-Dimensional Optical Waveguides
153(50)
5.1 Introduction
153(2)
5.2 Marcatilli's Method
155(7)
5.2.1 Field and Modes Guided in Rectangular Optical Waveguides
156(4)
5.2.2 Dispersion Characteristics
160(2)
5.3 Effective Index Method
162(4)
5.3.1 General Considerations
162(3)
5.3.2 Pseudowaveguide
165(1)
5.4 Finite Difference Numerical Techniques for 3D Waveguides
166(21)
5.4.1 Nonuniform Grid Semivectorial Polarized Finite Difference Method for Optical Waveguides with Arbitrary Index Profile
167(9)
5.4.2 Ti:LiNbO3-Diffused Channel Waveguide
176(11)
5.5 Mode Modeling of Rib Waveguides
187(11)
5.5.1 Choice of Grid Size
194(1)
5.5.2 Numerical Results
195(1)
5.5.3 Higher-Order Modes
196(2)
5.6 Conclusions
198(2)
References
200(3)
Chapter 6 Optical Fibers: Single- and Few-Mode Structures and Guiding Properties
203(46)
6.1 Optical Fibers: Circular Optical Waveguides
203(22)
6.1.1 General Aspects
203(1)
6.1.2 Optical Fiber: General Properties
204(3)
6.1.3 Fundamental Mode of Weakly Guiding Fibers
207(14)
6.1.4 Equivalent Step Index Description
221(4)
6.2 Special Fibers
225(2)
6.3 Nonlinear Optical Effects
227(7)
6.3.1 Nonlinear Self-Phase Modulation Effects
228(1)
6.3.2 Self-Phase Modulation
228(1)
6.3.3 Cross-Phase Modulation
229(1)
6.3.4 Stimulated Scattering Effects
230(4)
6.4 Optical Fiber Manufacturing and Cabling
234(4)
6.5 Concluding Remarks
238(1)
6.6 Problems
239(4)
6.6.1 Problem 1
239(1)
6.6.2 Problem 2
239(1)
6.6.3 Problem 3
240(1)
6.6.4 Problem 4
240(1)
6.6.5 Problem 5
240(1)
6.6.6 Problem 6
240(1)
6.6.7 Problem 7
241(1)
6.6.8 Problem 8
241(1)
6.6.9 Problem 9
241(1)
6.6.10 Problem 10
242(1)
Appendix 6.1 Technical Specification of Corning Single-Mode Optical Fibers
243(5)
References
248(1)
Chapter 7 Optical Fiber Operational Parameters
249(44)
7.1 Introductory Remarks
249(1)
7.2 Signal Attenuation in Optical Fibers
250(3)
7.2.1 Intrinsic or Material Attenuation
250(1)
7.2.2 Absorption
250(1)
7.2.3 Rayleigh Scattering
251(1)
7.2.4 Waveguide Loss
251(1)
7.2.5 Bending Loss
251(1)
7.2.6 Microbending Loss
252(1)
7.2.7 Joint or Splice Loss
252(1)
7.2.8 Attenuation Coefficient
253(1)
7.3 Signal Distortion in Optical Fibers
253(15)
7.3.1 Basics on Group Velocity
253(3)
7.3.2 Group Velocity Dispersion
256(10)
7.3.3 Transmission Bit Rate and the Dispersion Factor
266(1)
7.3.4 Effects of Mode Hopping
267(1)
7.4 Advanced Optical Fibers: Dispersion-Shifted, - Flattened, and - Compensated Optical Fibers
268(1)
7.5 Propagation of Optical Signals in Optical Fiber Transmission Line: Split-Step Fourier Method
268(10)
7.5.1 Symmetrical Split-Step Fourier Method (SSFM)
269(1)
7.5.2 MATLAB® Program and MATLAB Simulink® Models of the SSFM
270(7)
7.5.3 Remarks
277(1)
Appendix 7.1 Program Listings for Design of Standard Single-Mode Fiber
278(2)
Appendix 7.2 Program Listings of the Design of Non-Zero-Dispersion-Shifted Fiber
280(3)
7.6 Problems
283(8)
7.6.1 Problem 1
283(1)
7.6.2 Problem 2
283(1)
7.6.3 Problem 3
283(1)
7.6.4 Problem 4
283(1)
7.6.5 Problem 5
284(1)
7.6.6 Problem 6
284(1)
7.6.7 Problem 7
284(1)
7.6.8 Problem 8
285(1)
7.6.9 Problem 9
285(1)
7.6.10 Problem 10
285(1)
7.6.11 Problem 11
285(1)
7.6.12 Problem 12
286(1)
7.6.13 Problem 13: Fiber Design Mini-Project
286(5)
References
291(2)
Chapter 8 Guided Wave Optical Transmission Lines: Transfer Functions
293(38)
8.1 Transfer Function of Single-Mode Fibers
293(16)
8.1.1 Linear Transfer Function
293(5)
8.1.2 Single-Mode Optical Fiber Transfer Function: Simplified Linear and Nonlinear Operating Regions
298(8)
8.1.3 Nonlinear Fiber Transfer Function
306(3)
8.2 Fiber Nonlinearity
309(2)
8.2.1 SPM and XPM Effects
309(1)
8.2.2 Modulation Instability
310(1)
8.2.3 Effects of Mode Hopping
311(1)
8.3 Nonlinear Fiber Transfer Functions and Application in Compensations
311(11)
8.3.1 Cascades of Linear and Nonlinear Transfer Functions in Time and Frequency Domains
313(2)
8.3.2 Volterra Nonlinear Transfer Function and Electronic Compensation
315(1)
8.3.3 SPM and Intrachannel Nonlinear Effects
316(6)
8.4 Concluding Remarks
322(1)
Appendix 8.1 Program Listings of Split-Step Fourier Method (SSFM) with Nonlinear SPM Effect and Raman Gain Distribution
322(3)
Appendix 8.2 Program Listings of an Initialization File
325(3)
References
328(3)
Chapter 9 Fourier Guided Wave Optics
331(40)
Abbreviations
331(1)
9.1 Introduction
331(2)
9.2 Background: Fourier Transformation
333(16)
9.2.1 Basic Transform
333(1)
9.2.2 Optical Circuitry Implementation
334(5)
9.2.3 Optical DFT by Mach-Zehnder Delay Interferometers (MZDIs)
339(1)
9.2.4 Fourier Transform Signal Flow and Optical Implementation
340(5)
9.2.5 AWG Structure and Characteristics
345(4)
9.3 Guided Wave Wavelet Transformer
349(10)
9.3.1 Wavelet Transformation and Wavelet Packets
349(3)
9.3.2 Fiber Optic Synthesis
352(3)
9.3.3 Synthesis Using Multimode Interference Structure
355(2)
9.3.4 Remarks
357(2)
9.4 Optical Orthogonal Frequency Division Multiplexing
359(1)
9.5 Nyquist Orthogonal Channels for Tbps Optical Transmission Systems
360(3)
9.6 Design of Optical Waveguides for Optical FFT and IFFT
363(3)
9.7 Concluding Remarks
366(2)
Appendix 9.1
368(1)
References
369(2)
Appendix: Vector Analysis 371(8)
Index 379
Le Nguyen Binh is a technical director at the European Research Center of Huawei Technologies in Munich, Germany. He is the editor, author, or coauthor of eight books in optics and photonics, including:





Nonlinear Optical Systems: Principles, Phenomena, and Advanced Signal Processing Guided Wave Photonics: Fundamentals and Applications with MATLAB® Ultra-Fast Fiber Lasers: Principles and Applications with MATLAB® Models Optical Fiber Communications Systems: Theory and Practice with MATLAB® and Simulink® Models