Preface |
|
xv | |
Acknowledgments |
|
xix | |
About the Author |
|
xxi | |
|
Chapter 1 Electric and Magnetic Fields and Waves |
|
|
1 | (18) |
|
|
1 | (1) |
|
|
1 | (4) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.2.3 Waves by Phasor Representation |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
5 | (1) |
|
|
5 | (2) |
|
1.3.3 Gauss's Law for Electric Field and Charges |
|
|
7 | (1) |
|
1.3.4 Gauss's Law for Magnetic Field |
|
|
7 | (1) |
|
1.4 Maxwell Equations in Dielectric Media |
|
|
7 | (3) |
|
|
7 | (2) |
|
|
9 | (1) |
|
1.4.3 Boundary Conditions |
|
|
9 | (1) |
|
1.4.4 Reciprocity Theorems |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (3) |
|
1.7 Maxwell's Equations in Time-Harmonic and Phasor Forms |
|
|
14 | (1) |
|
|
14 | (4) |
|
1.8.1 General Wave Equations |
|
|
14 | (2) |
|
1.8.2 Time-Harmonic Wave Equation |
|
|
16 | (2) |
|
|
18 | (1) |
|
Chapter 2 Electrical Transmission Lines |
|
|
19 | (28) |
|
2.1 Model of Time-Harmonic Waves on Transmission Lines |
|
|
19 | (4) |
|
2.1.1 Distributed Model of Transmission Lines |
|
|
19 | (2) |
|
2.1.2 Time-Harmonic Wavesion Transmission Lines |
|
|
21 | (2) |
|
2.2 Terminated Transmission Lines |
|
|
23 | (4) |
|
|
23 | (1) |
|
2.2.2 Reflection Coefficient |
|
|
24 | (1) |
|
2.2.3 Input Line Impedance |
|
|
25 | (2) |
|
|
27 | (2) |
|
|
29 | (3) |
|
|
32 | (5) |
|
|
32 | (1) |
|
|
33 | (1) |
|
2.5.3 Notes on the Slotted Lines |
|
|
33 | (1) |
|
|
33 | (2) |
|
2.5.5 Time-Domain Reflectometry |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
38 | (7) |
|
2.7.1 Problem on TDR Operation on Transmission and Reflection |
|
|
38 | (1) |
|
2.7.2 Problem on Transmission Line |
|
|
39 | (1) |
|
2.7.3 Problem on Slotted Transmission Line Experiment |
|
|
40 | (1) |
|
2.7.4 Problems on Transmission Lines |
|
|
40 | (5) |
|
|
45 | (2) |
|
|
47 | (32) |
|
|
47 | (7) |
|
3.1.1 Differential Doublet and Dipole Antenna |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
3.1.4 Linear Antenna Current Distribution |
|
|
51 | (3) |
|
|
54 | (10) |
|
3.2.1 Radian Field of Hertzian Antenna |
|
|
56 | (1) |
|
3.2.2 Standing Wave Antenna: The Half-Wave Dipole Antenna |
|
|
57 | (1) |
|
|
58 | (2) |
|
3.2.4 Traveling Wave Antenna |
|
|
60 | (1) |
|
3.2.5 Omnidirectional Antenna |
|
|
61 | (2) |
|
3.2.6 Horn Waveguide Antenna |
|
|
63 | (1) |
|
3.3 Antenna Figure of Merit |
|
|
64 | (2) |
|
|
66 | (3) |
|
|
66 | (2) |
|
3.4.2 Measurement of the Monopole Antenna Admittance |
|
|
68 | (1) |
|
|
69 | (1) |
|
3.6 Appendix: Metallic Waveguide |
|
|
69 | (7) |
|
|
69 | (5) |
|
3.6.2 Experiment on Waveguide |
|
|
74 | (2) |
|
|
76 | (1) |
|
3.7.1 Waveguide Measurements |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
Chapter 4 Planar Optical Waveguides |
|
|
79 | (74) |
|
|
79 | (2) |
|
4.2 Formation of Planar Single-Mode Waveguide Problems |
|
|
81 | (6) |
|
4.2.1 TE/TM Wave Equation |
|
|
82 | (5) |
|
4.3 Approximate Analytical Methods of Solution |
|
|
87 | (35) |
|
4.3.1 Asymmetrical Waveguides |
|
|
88 | (11) |
|
4.3.2 Symmetrical Waveguides |
|
|
99 | (22) |
|
|
121 | (1) |
|
4.4 Design and Simulations of Planar Optical Waveguides: Experiments |
|
|
122 | (7) |
|
|
122 | (1) |
|
4.4.2 Theoretical Background |
|
|
122 | (4) |
|
4.4.3 Simulation of Optical Fields and Propagation in Slab Optical Waveguide Structures |
|
|
126 | (3) |
|
4.5 Appendix A: Exact Analysis of Clad Linear Optical Waveguides |
|
|
129 | (4) |
|
4.5.1 Asymmetrical Clad Linear Profile |
|
|
129 | (3) |
|
4.5.2 Symmetrical Waveguide |
|
|
132 | (1) |
|
4.6 Appendix B: WKB Method, Turning Points, and Connection Formulae |
|
|
133 | (14) |
|
|
133 | (1) |
|
4.6.2 Derivation of the WKB Approximate Solutions |
|
|
133 | (3) |
|
4.6.3 Turning Point Corrections |
|
|
136 | (6) |
|
4.6.4 Correction Formulae |
|
|
142 | (2) |
|
4.6.5 Application of Correction Formulae |
|
|
144 | (3) |
|
|
147 | (2) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (4) |
|
Chapter 5 Three-Dimensional Optical Waveguides |
|
|
153 | (50) |
|
|
153 | (2) |
|
|
155 | (7) |
|
5.2.1 Field and Modes Guided in Rectangular Optical Waveguides |
|
|
156 | (4) |
|
5.2.2 Dispersion Characteristics |
|
|
160 | (2) |
|
5.3 Effective Index Method |
|
|
162 | (4) |
|
5.3.1 General Considerations |
|
|
162 | (3) |
|
|
165 | (1) |
|
5.4 Finite Difference Numerical Techniques for 3D Waveguides |
|
|
166 | (21) |
|
5.4.1 Nonuniform Grid Semivectorial Polarized Finite Difference Method for Optical Waveguides with Arbitrary Index Profile |
|
|
167 | (9) |
|
5.4.2 Ti:LiNbO3-Diffused Channel Waveguide |
|
|
176 | (11) |
|
5.5 Mode Modeling of Rib Waveguides |
|
|
187 | (11) |
|
5.5.1 Choice of Grid Size |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (2) |
|
|
198 | (2) |
|
|
200 | (3) |
|
Chapter 6 Optical Fibers: Single- and Few-Mode Structures and Guiding Properties |
|
|
203 | (46) |
|
6.1 Optical Fibers: Circular Optical Waveguides |
|
|
203 | (22) |
|
|
203 | (1) |
|
6.1.2 Optical Fiber: General Properties |
|
|
204 | (3) |
|
6.1.3 Fundamental Mode of Weakly Guiding Fibers |
|
|
207 | (14) |
|
6.1.4 Equivalent Step Index Description |
|
|
221 | (4) |
|
|
225 | (2) |
|
6.3 Nonlinear Optical Effects |
|
|
227 | (7) |
|
6.3.1 Nonlinear Self-Phase Modulation Effects |
|
|
228 | (1) |
|
6.3.2 Self-Phase Modulation |
|
|
228 | (1) |
|
6.3.3 Cross-Phase Modulation |
|
|
229 | (1) |
|
6.3.4 Stimulated Scattering Effects |
|
|
230 | (4) |
|
6.4 Optical Fiber Manufacturing and Cabling |
|
|
234 | (4) |
|
|
238 | (1) |
|
|
239 | (4) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
Appendix 6.1 Technical Specification of Corning Single-Mode Optical Fibers |
|
|
243 | (5) |
|
|
248 | (1) |
|
Chapter 7 Optical Fiber Operational Parameters |
|
|
249 | (44) |
|
|
249 | (1) |
|
7.2 Signal Attenuation in Optical Fibers |
|
|
250 | (3) |
|
7.2.1 Intrinsic or Material Attenuation |
|
|
250 | (1) |
|
|
250 | (1) |
|
7.2.3 Rayleigh Scattering |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
7.2.7 Joint or Splice Loss |
|
|
252 | (1) |
|
7.2.8 Attenuation Coefficient |
|
|
253 | (1) |
|
7.3 Signal Distortion in Optical Fibers |
|
|
253 | (15) |
|
7.3.1 Basics on Group Velocity |
|
|
253 | (3) |
|
7.3.2 Group Velocity Dispersion |
|
|
256 | (10) |
|
7.3.3 Transmission Bit Rate and the Dispersion Factor |
|
|
266 | (1) |
|
7.3.4 Effects of Mode Hopping |
|
|
267 | (1) |
|
7.4 Advanced Optical Fibers: Dispersion-Shifted, - Flattened, and - Compensated Optical Fibers |
|
|
268 | (1) |
|
7.5 Propagation of Optical Signals in Optical Fiber Transmission Line: Split-Step Fourier Method |
|
|
268 | (10) |
|
7.5.1 Symmetrical Split-Step Fourier Method (SSFM) |
|
|
269 | (1) |
|
7.5.2 MATLAB® Program and MATLAB Simulink® Models of the SSFM |
|
|
270 | (7) |
|
|
277 | (1) |
|
Appendix 7.1 Program Listings for Design of Standard Single-Mode Fiber |
|
|
278 | (2) |
|
Appendix 7.2 Program Listings of the Design of Non-Zero-Dispersion-Shifted Fiber |
|
|
280 | (3) |
|
|
283 | (8) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
7.6.13 Problem 13: Fiber Design Mini-Project |
|
|
286 | (5) |
|
|
291 | (2) |
|
Chapter 8 Guided Wave Optical Transmission Lines: Transfer Functions |
|
|
293 | (38) |
|
8.1 Transfer Function of Single-Mode Fibers |
|
|
293 | (16) |
|
8.1.1 Linear Transfer Function |
|
|
293 | (5) |
|
8.1.2 Single-Mode Optical Fiber Transfer Function: Simplified Linear and Nonlinear Operating Regions |
|
|
298 | (8) |
|
8.1.3 Nonlinear Fiber Transfer Function |
|
|
306 | (3) |
|
|
309 | (2) |
|
8.2.1 SPM and XPM Effects |
|
|
309 | (1) |
|
8.2.2 Modulation Instability |
|
|
310 | (1) |
|
8.2.3 Effects of Mode Hopping |
|
|
311 | (1) |
|
8.3 Nonlinear Fiber Transfer Functions and Application in Compensations |
|
|
311 | (11) |
|
8.3.1 Cascades of Linear and Nonlinear Transfer Functions in Time and Frequency Domains |
|
|
313 | (2) |
|
8.3.2 Volterra Nonlinear Transfer Function and Electronic Compensation |
|
|
315 | (1) |
|
8.3.3 SPM and Intrachannel Nonlinear Effects |
|
|
316 | (6) |
|
|
322 | (1) |
|
Appendix 8.1 Program Listings of Split-Step Fourier Method (SSFM) with Nonlinear SPM Effect and Raman Gain Distribution |
|
|
322 | (3) |
|
Appendix 8.2 Program Listings of an Initialization File |
|
|
325 | (3) |
|
|
328 | (3) |
|
Chapter 9 Fourier Guided Wave Optics |
|
|
331 | (40) |
|
|
331 | (1) |
|
|
331 | (2) |
|
9.2 Background: Fourier Transformation |
|
|
333 | (16) |
|
|
333 | (1) |
|
9.2.2 Optical Circuitry Implementation |
|
|
334 | (5) |
|
9.2.3 Optical DFT by Mach-Zehnder Delay Interferometers (MZDIs) |
|
|
339 | (1) |
|
9.2.4 Fourier Transform Signal Flow and Optical Implementation |
|
|
340 | (5) |
|
9.2.5 AWG Structure and Characteristics |
|
|
345 | (4) |
|
9.3 Guided Wave Wavelet Transformer |
|
|
349 | (10) |
|
9.3.1 Wavelet Transformation and Wavelet Packets |
|
|
349 | (3) |
|
9.3.2 Fiber Optic Synthesis |
|
|
352 | (3) |
|
9.3.3 Synthesis Using Multimode Interference Structure |
|
|
355 | (2) |
|
|
357 | (2) |
|
9.4 Optical Orthogonal Frequency Division Multiplexing |
|
|
359 | (1) |
|
9.5 Nyquist Orthogonal Channels for Tbps Optical Transmission Systems |
|
|
360 | (3) |
|
9.6 Design of Optical Waveguides for Optical FFT and IFFT |
|
|
363 | (3) |
|
|
366 | (2) |
|
|
368 | (1) |
|
|
369 | (2) |
Appendix: Vector Analysis |
|
371 | (8) |
Index |
|
379 | |