Muutke küpsiste eelistusi

E-raamat: Wireless Power Transfer: Theory, technology, and applications

Edited by (Kyoto University, Japan)
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 22-Jun-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785613470
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 201,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Energy Engineering
  • Ilmumisaeg: 22-Jun-2018
  • Kirjastus: Institution of Engineering and Technology
  • Keel: eng
  • ISBN-13: 9781785613470
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book covers the very latest in theory and technology for Wireless Power Transfer (WPT), for both coupling as well as radiative WPT. It describes the theory as well as the technology and applications.



Wireless Power Transfer (WPT) enables power to be transferred from a grid or storage unit to a device without the need for cable connections. This can be performed by inductive coupling of magnetic fields as well as by direct radiative transfer via beams of electromagnetic waves, commonly radiowaves, microwaves or lasers. Inductive coupling is the most widely used wireless technology with applications including charging handheld devices, RFID tags, chargers for implantable medical devices, and proposed systems for charging electric vehicles. Applications of radiative power transfer include solar power satellites and wireless powered drone aircraft.

This book covers the very latest in theory and technology of both coupling and radiative wireless power transfer. Topics covered include the basic theory of inductive coupling and resonance coupling WPT; multi-hop WPT; circuit theory for wireless couplers; inverter/rectifier technologies for WPT systems; basic theory of WPT via radio waves; technologies of antenna and phased array for WPT via radio waves; transmitter/rectifier technologies for WPT via radio waves; applications of coupling WPT for electric vehicle charging; applications of long-distance WPT; and biological interactions of electromagnetic fields and waves.

This book is ideal for researchers and PhD students in academia and related industry (including EV industry). Also it is highly suited for engineers and practitioners involved with wireless power transmission.

About the editor xi
1 Introduction
1(6)
Naoki Shinohara
References
5(2)
2 Basic theory of inductive coupling
7(16)
Hidetoshi Matsuki
2.1 Introduction
7(1)
2.2 WPT system
7(7)
2.2.1 Basic theory of WPT system
7(5)
2.2.2 Microwave method
12(1)
2.2.3 Magnetic resonance method
12(1)
2.2.4 Electrical resonance method
13(1)
2.2.5 Electromagnetic induction method
14(1)
2.3 Magnetic induction
14(7)
2.3.1 Power transformer
14(4)
2.3.2 Magnetic induction (LC mode)
18(3)
2.4 Medical applications
21(2)
References
22(1)
3 Basic theory of resonance coupling WPT
23(14)
Hiroshi Hirayama
3.1 Classification of WPT systems
23(3)
3.1.1 Classification of near-field and far-field WPT
23(1)
3.1.2 Classification of resonant WPT
24(1)
3.1.3 Relationship among WPT types
25(1)
3.2 Unified model of resonance coupling WPT
26(5)
3.2.1 Concept of the "coupler"
26(1)
3.2.2 Unified model based on resonance and coupling
26(2)
3.2.3 Application for LC resonator
28(1)
3.2.4 Application for electric field coupling WPT
29(1)
3.2.5 Application for self-resonator
29(2)
3.3 Generalized model of WPT
31(6)
3.3.1 Energy flow in WPT system
31(2)
3.3.2 Generalized model
33(1)
3.3.3 Understanding of coupled-resonator WPT system through generalized model
34(1)
3.3.4 Understanding of coupler-and-matching-circuit WPT system through generalized model
34(1)
Acknowledgment
35(1)
References
35(2)
4 Multi-hop wireless power transmission
37(28)
Yoshiaki Narusue
Yoshihiro Kawahara
4.1 Transfer distance extension using relay effect
38(3)
4.2 Multi-hop routing
41(4)
4.3 Equivalent circuit and transfer efficiency
45(3)
4.4 Design theory based on BPF theory
48(6)
4.5 Design theory for arbitrary hop power transmission
54(4)
4.6 Power efficiency estimation
58(7)
References
62(3)
5 Circuit theory on wireless couplers
65(12)
Takashi Ohira
5.1 Introduction
65(1)
5.2 Inductive coupler
66(3)
5.2.1 Equivalent circuit
66(1)
5.2.2 Coupling coefficient
67(1)
5.2.3 Q factor
67(1)
5.2.4 Coupling Q factor
68(1)
5.2.5 Optimum impedance
68(1)
5.2.6 Maximum efficiency
69(1)
5.3 Capacitive coupler
69(2)
5.3.1 Equivalent circuit
69(1)
5.3.2 Coupling coefficient
70(1)
5.3.3 Q factor
70(1)
5.3.4 Coupling Q factor
70(1)
5.3.5 Optimum admittance
71(1)
5.3.6 Maximum efficiency
71(1)
5.4 Generalized formulas
71(6)
5.4.1 Two-port black box
72(1)
5.4.2 Impedance matrix
72(1)
5.4.3 Generalized kQ
73(1)
5.4.4 Optimum load and input impedance
74(1)
5.4.5 Maximum efficiency
74(3)
5.5 Conclusion
77(1)
Appendix A
A.1 Measurement of kQ in practice
77(6)
Acknowledgments
81(1)
References
81(2)
6 Inverter/rectifier technologies on WPT systems
83(30)
Hiroo Sekiya
6.1 Introduction
83(1)
6.2 WPT system construction
84(1)
6.3 General theory of optimal WPT system designs
85(7)
6.3.1 Coupling coils
85(5)
6.3.2 Optimal design of coupling part
90(2)
6.3.3 Design strategies of rectifier and inverter
92(1)
6.4 High-efficiency rectifier
92(5)
6.4.1 Class D rectifier
92(1)
6.4.2 Effects of diode parasitic capacitance
93(2)
6.4.3 Class E rectifier
95(1)
6.4.4 Class E/F rectifier
96(1)
6.5 High-efficiency inverters
97(6)
6.5.1 Class D inverter
97(2)
6.5.2 Class E inverter
99(1)
6.5.3 Class DE inverter
100(1)
6.5.4 Class E/F inverter
101(1)
6.5.5 Class Φ inverter
101(2)
6.6 Design example of optimal WPT system
103(5)
6.6.1 Optimal design for fixed coil parameters
103(3)
6.6.2 Optimal WPT system design
106(2)
6.7 Conclusion
108(5)
References
109(4)
7 Basic theory of wireless power transfer via radio waves
113(16)
Naoki Shinohara
7.1 Introduction
113(1)
7.2 Propagation of radio waves
114(9)
7.2.1 Radio waves in a far field
114(2)
7.2.2 Radio waves in the radiative near field
116(3)
7.2.3 Radio waves in the reactive near field
119(3)
7.2.4 Radio waves from a dipole antenna
122(1)
7.3 Directivity control and beam formation using phased-array antenna
123(3)
7.4 Receiving antenna efficiency
126(3)
References
127(2)
8 Technologies of antenna and phased array for wireless power transfer via radio waves
129(26)
A. Massa
G. Oliveri
P. Rocca
N. Anselmi
M. Salucci
Abstract
129(1)
8.1 Introduction and rationale
129(2)
8.2 Design of antenna and phased arrays for WPT: problem formulation
131(3)
8.2.1 The end-to-end WPT efficiency
131(1)
8.2.2 The transmitting WPT antenna design problem
132(2)
8.3 WPT phased array synthesis techniques
134(13)
8.3.1 Uniform excitations in WPT
134(1)
8.3.2 Heuristic tapering methods
135(3)
8.3.3 Designs based on optimization strategies
138(1)
8.3.4 Optimal WPT phased array synthesis
139(2)
8.3.5 Unconventional architectures for WPT phased arrays
141(6)
8.4 Final remarks, current trends, and future perspectives
147(8)
Acknowledgments
149(1)
References
149(6)
9 Transmitter/rectifier technologies in WPT via radio waves
155(22)
Naoki Shinohara
9.1 Introduction
155(2)
9.2 RF transmitter
157(9)
9.2.1 RF amplifier with semiconductor
157(5)
9.2.2 Vacuum tube type microwave generator/amplifier
162(4)
9.3 RF rectifier
166(8)
9.3.1 RF rectifier with semiconductor
166(7)
9.3.2 Vacuum tube-type microwave rectifier
173(1)
9.4 RF amplifier/rectifier with semiconductor
174(3)
References
174(3)
10 Applications of coupling WPT for electric vehicle
177(28)
Yukio Yokoi
10.1 Introduction
177(2)
10.2 EV and charging
179(1)
10.3 Conductive charging
180(2)
10.4 Wireless charging
182(7)
10.4.1 Field evaluation in Europe
182(2)
10.4.2 Filed evaluation in Japan
184(2)
10.4.3 Filed evaluation in Korea
186(2)
10.4.4 Filed evaluation in China
188(1)
10.5 Regulation and standardization for WPT
189(8)
10.5.1 Japan
191(1)
10.5.2 European standards for electricity supply
192(1)
10.5.3 China
192(2)
10.5.4 IEC/ISO and SAE
194(3)
10.6 ITU activity on WPT; frequency allocation
197(1)
10.6.1 2014: Approval of non-beam WPT report
197(1)
10.7 Coexisting with other wireless service (C1SPR)
198(1)
10.8 Human safety; IEC TC106 and 1CNIRP
199(1)
10.9 WPT application for the future: dynamic charging for EV
200(5)
References
203(2)
11 Applications of long-distance wireless power transfer
205(24)
Naoki Shinohara
Yoshiaki Narusue
Yoshihiro Kawahara
11.1 Introduction
205(2)
11.2 Long-distance WPT in far field
207(10)
11.2.1 Energy harvesting and scavenging
207(5)
11.2.2 Ubiquitous WPT
212(5)
11.3 Long-distance WPT in the radiative near field
217(6)
11.4 Long-distance WPT in fielded field
223(1)
11.5 Near-field WPT in a cavity resonator
224(5)
References
225(4)
12 Biological issue of electromagnetic fields and waves
229(22)
Shin Koyama
12.1 Introduction
229(1)
12.2 Epidemiological studies
230(1)
12.3 Animal studies
231(1)
12.4 Cellular studies
232(11)
12.4.1 Genotoxic effects
232(7)
12.4.2 Nongenotoxic effects
239(4)
12.5 Conclusions on IF and RF studies
243(8)
References
243(8)
13 Impact of electromagnetic interference arising from wireless power transfer upon implantable medical device
251(18)
Takashi Hikage
13.1 EMI studies on active implantable medical devices
253(11)
13.1.1 In vitro EMI measurement system for WPTSs
253(4)
13.1.2 Operation conditions of the AIMD
257(1)
13.1.3 Fundamental test procedure
258(1)
13.1.4 Measurement results for WPTS examples [ 45]
259(5)
13.2 RF-induced heating of metal implants
264(5)
Acknowledgment
265(1)
References
265(4)
Index 269
Naoki Shinohara is a Professor at Kyoto University, Japan. His research focuses on solar power satellite, and technology and applications of microwave power transfer. He has been working on wireless power transfer technologies for 25 years. Memberships and positions include the IEEE MTT-S Technical Committee 26 (Wireless Power Transfer and Conversion) chair, IEEE Wireless Power Transfer Conference founder and advisory committee member, International Journal of Wireless Power Transfer executive editor, 1st committee chair of IEICE Wireless Power Transfer, Space Solar Power Systems Society board member, Wireless Power Transfer Consortium for Practical Applications (WiPoT) chair, and Wireless Power Management Consortium (WPMc) chair.