Muutke küpsiste eelistusi

E-raamat: Working with Network Data: A Data Science Perspective

(University of Vermont), (Indiana University, Bloomington)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 31-May-2024
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009212618
  • Formaat - PDF+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 31-May-2024
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781009212618

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Drawing examples from real-world networks, this essential book traces the methods behind network analysis and equips you with a toolbox of diverse methods and data modelling approaches. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.

Drawing examples from real-world networks, this essential book traces the methods behind network analysis and explains how network data is first gathered, then processed and interpreted. The text will equip you with a toolbox of diverse methods and data modelling approaches, allowing you to quickly start making your own calculations on a huge variety of networked systems. This book sets you up to succeed, addressing the questions of what you need to know and what to do with it, when beginning to work with network data. The hands-on approach adopted throughout means that beginners quickly become capable practitioners, guided by a wealth of interesting examples that demonstrate key concepts. Exercises using real-world data extend and deepen your understanding, and develop effective working patterns in network calculations and analysis. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.

Arvustused

'An essential resource for newcomers to network science, this book expertly addresses the practical challenges of handling network data. Through a rich array of real-world examples and hands-on exercises, Bagrow and Ahn skillfully guide readers through the complexities of conceptualizing and analyzing networked data, making this text a fundamental tool for students and researchers eager to explore the power of connections across various disciplines.' Albert-László Barabási, Dodge Distinguished Professor of Network Science at Northeastern University

Muu info

Suitable for students and researchers in a range of disciplines, this novel text provides a fast-track to network data expertise.
Contents; Preface; Part I. Background:
1. A whirlwind tour of network
science;
2. Network data across fields;
3. Data ethics;
4. Primer; Part II.
Applications, Tools and Tasks:
5. The life-cycle of a network study;
6.
Gathering data;
7. Extracting networks from data the 'upstream task';
8.
Implementation: storing and manipulating network data;
9. Incorporating node
and edge attributes;
10. Awful errors and how to amend them;
11. Explore and
explain: statistics for network data;
12. Understanding network structure and
organization;
13. Visualizing networks;
14. Summarizing and comparing
networks;
15. Dynamics and dynamic networks;
16. Machine learning; Interlude
Good practices for scientific computing;
17. Research record-keeping;
18.
Data provenance;
19. Reproducible and reliable code;
20. Helpful tools; Part
III. Fundamentals:
21. Networks demand network thinking: the friendship
paradox;
22. Network models;
23. Statistical models and inference;
24.
Uncertainty quantification and error analysis;
25. Ghost in the matrix:
spectral methods for networks;
26. Embedding and machine learning;
27. Big
data and scalability; Conclusion; Bibliography; Index.
James Bagrow is Associate Professor in Mathematics & Statistics at the University of Vermont. He works at the intersection of data science, complex systems and applied mathematics, using cutting-edge methods, mathematical models and large-scale data to explore and understand complex networks and systems. Yong-Yeol Ahn is Professor at Indiana University and a former Visiting Professor at the Massachusetts Institute of Technology. He specializes in network and data science and machine learning, and his research on complex social and biological systems has been recognized by many awards, including the Microsoft Research Faculty Fellowship.