|
|
xi | |
|
|
xiii | |
Preface |
|
xv | |
Acknowledgments |
|
xvii | |
About the Author |
|
xix | |
Symbol Description |
|
xxi | |
Introduction |
|
xxv | |
|
|
1 | (36) |
|
0.1 Integer Factorization |
|
|
1 | (12) |
|
|
13 | (8) |
|
|
21 | (8) |
|
0.4 Rational and Real Numbers |
|
|
29 | (8) |
|
1 Understanding the Group Concept |
|
|
37 | (24) |
|
1.1 Introduction to Groups |
|
|
37 | (6) |
|
|
43 | (9) |
|
1.3 The Definition of a Group |
|
|
52 | (9) |
|
2 The Structure within a Group |
|
|
61 | (28) |
|
|
61 | (6) |
|
2.2 Defining Finite Groups in Sage |
|
|
67 | (8) |
|
|
75 | (14) |
|
3 Patterns within the Cosets of Groups |
|
|
89 | (30) |
|
3.1 Left and Right Cosets |
|
|
89 | (8) |
|
3.2 Writing Secret Messages |
|
|
97 | (10) |
|
|
107 | (7) |
|
|
114 | (5) |
|
4 Mappings between Groups |
|
|
119 | (30) |
|
|
119 | (8) |
|
|
127 | (9) |
|
4.3 The Three Isomorphism Theorems |
|
|
136 | (13) |
|
|
149 | (32) |
|
|
149 | (7) |
|
|
156 | (9) |
|
|
165 | (10) |
|
5.4 Numbering the Permutations |
|
|
175 | (6) |
|
6 Building Larger Groups from Smaller Groups |
|
|
181 | (44) |
|
|
181 | (8) |
|
6.2 The Fundamental Theorem of Finite Abelian Groups |
|
|
189 | (12) |
|
|
201 | (12) |
|
|
213 | (12) |
|
7 The Search for Normal Subgroups |
|
|
225 | (38) |
|
7.1 The Center of a Group |
|
|
225 | (6) |
|
7.2 The Normalizer and Normal Closure Subgroups |
|
|
231 | (4) |
|
7.3 Conjugacy Classes and Simple Groups |
|
|
235 | (12) |
|
7.4 The Class Equation and Sylow's Theorems |
|
|
247 | (16) |
|
8 Solvable and Insoluble Groups |
|
|
263 | (38) |
|
8.1 Subnormal Series and the Jordan-Holder Theorem |
|
|
263 | (10) |
|
|
273 | (8) |
|
|
281 | (8) |
|
8.4 Solving the Pyraminx™ |
|
|
289 | (12) |
|
|
301 | (26) |
|
9.1 The Definition of a Ring |
|
|
301 | (9) |
|
9.2 Entering Finite Rings into Sage |
|
|
310 | (9) |
|
9.3 Some Properties of Rings |
|
|
319 | (8) |
|
10 The Structure within Rings |
|
|
327 | (34) |
|
|
327 | (6) |
|
10.2 Quotient Rings and Ideals |
|
|
333 | (9) |
|
|
342 | (9) |
|
10.4 Homomorphisms and Kernels |
|
|
351 | (10) |
|
11 Integral Domains and Fields |
|
|
361 | (46) |
|
|
361 | (10) |
|
11.2 The Field of Quotients |
|
|
371 | (9) |
|
|
380 | (16) |
|
11.4 Ordered Commutative Rings |
|
|
396 | (11) |
|
|
407 | (44) |
|
12.1 Factorization of Polynomials |
|
|
407 | (12) |
|
12.2 Unique Factorization Domains |
|
|
419 | (12) |
|
12.3 Principal Ideal Domains |
|
|
431 | (8) |
|
|
439 | (12) |
|
|
451 | (42) |
|
13.1 Entering Finite Fields in Sage |
|
|
451 | (5) |
|
13.2 Properties of Finite Fields |
|
|
456 | (12) |
|
13.3 Cyclotomic Polynomials |
|
|
468 | (14) |
|
|
482 | (11) |
|
|
493 | (30) |
|
|
493 | (9) |
|
|
502 | (8) |
|
|
510 | (13) |
|
|
523 | (42) |
|
15.1 The Galois Group of an Extension Field |
|
|
523 | (12) |
|
15.2 The Galois Group of a Polynomial in Q |
|
|
535 | (11) |
|
15.3 The Fundamental Theorem of Galois Theory |
|
|
546 | (9) |
|
15.4 Applications of Galois Theory |
|
|
555 | (10) |
Appendix: Sage vs. Mathematica® |
|
565 | (8) |
Answers to Odd-Numbered Problems |
|
573 | (38) |
Bibliography |
|
611 | (2) |
Index |
|
613 | |