Muutke küpsiste eelistusi

E-raamat: Abstract Algebra: An Interactive Approach, Second Edition

(Arkansas State University, Jonesboro, USA)
  • Formaat: 619 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 10-Feb-2016
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781498719773
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 54,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 619 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 10-Feb-2016
  • Kirjastus: Chapman & Hall/CRC
  • ISBN-13: 9781498719773
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The new edition of Abstract Algebra: An Interactive Approach presents a hands-on and traditional approach to learning groups, rings, and fields. It then goes further to offer optional technology use to create opportunities for interactive learning and computer use.

This new edition offers a more traditional approach offering additional topics to the primary syllabus placed after primary topics are covered. This creates a more natural flow to the order of the subjects presented. This edition is transformed by historical notes and better explanations of why topics are covered.

This innovative textbook shows how students can better grasp difficult algebraic concepts through the use of computer programs. It encourages students to experiment with various applications of abstract algebra, thereby obtaining a real-world perspective of this area.

Each chapter includes, corresponding Sage notebooks, traditional exercises, and several interactive computer problems that utilize Sage and Mathematica® to explore groups, rings, fields and additional topics.

This text does not sacrifice mathematical rigor. It covers classical proofs, such as Abels theorem, as well as many topics not found in most standard introductory texts. The author explores semi-direct products, polycyclic groups, Rubiks Cube®-like puzzles, and Wedderburns theorem. The author also incorporates problem sequences that allow students to delve into interesting topics, including Fermats two square theorem.

Arvustused

Praise for previous editions:

"The textbook gives an introduction to algebra. The course includes the explanation on how to use the computer algebra systems GAP and Mathematica The book can be used for an undergraduate-level course (chapter 1-4 and 9-12) or a second semester graduate-level course." Gerhard Pfister, Zentralblatt MATH

List of Figures
xi
List of Tables
xiii
Preface xv
Acknowledgments xvii
About the Author xix
Symbol Description xxi
Introduction xxv
0 Preliminaries
1(36)
0.1 Integer Factorization
1(12)
0.2 Functions
13(8)
0.3 Modular Arithmetic
21(8)
0.4 Rational and Real Numbers
29(8)
1 Understanding the Group Concept
37(24)
1.1 Introduction to Groups
37(6)
1.2 Modular Congruence
43(9)
1.3 The Definition of a Group
52(9)
2 The Structure within a Group
61(28)
2.1 Generators of Groups
61(6)
2.2 Defining Finite Groups in Sage
67(8)
2.3 Subgroups
75(14)
3 Patterns within the Cosets of Groups
89(30)
3.1 Left and Right Cosets
89(8)
3.2 Writing Secret Messages
97(10)
3.3 Normal Subgroups
107(7)
3.4 Quotient Groups
114(5)
4 Mappings between Groups
119(30)
4.1 Isomorphisms
119(8)
4.2 Homomorphisms
127(9)
4.3 The Three Isomorphism Theorems
136(13)
5 Permutation Groups
149(32)
5.1 Symmetric Groups
149(7)
5.2 Cycles
156(9)
5.3 Cayley's Theorem
165(10)
5.4 Numbering the Permutations
175(6)
6 Building Larger Groups from Smaller Groups
181(44)
6.1 The Direct Product
181(8)
6.2 The Fundamental Theorem of Finite Abelian Groups
189(12)
6.3 Automorphisms
201(12)
6.4 Semi-Direct Products
213(12)
7 The Search for Normal Subgroups
225(38)
7.1 The Center of a Group
225(6)
7.2 The Normalizer and Normal Closure Subgroups
231(4)
7.3 Conjugacy Classes and Simple Groups
235(12)
7.4 The Class Equation and Sylow's Theorems
247(16)
8 Solvable and Insoluble Groups
263(38)
8.1 Subnormal Series and the Jordan-Holder Theorem
263(10)
8.2 Derived Group Series
273(8)
8.3 Polycyclic Groups
281(8)
8.4 Solving the Pyraminx™
289(12)
9 Introduction to Rings
301(26)
9.1 The Definition of a Ring
301(9)
9.2 Entering Finite Rings into Sage
310(9)
9.3 Some Properties of Rings
319(8)
10 The Structure within Rings
327(34)
10.1 Subrings
327(6)
10.2 Quotient Rings and Ideals
333(9)
10.3 Ring Isomorphisms
342(9)
10.4 Homomorphisms and Kernels
351(10)
11 Integral Domains and Fields
361(46)
11.1 Polynomial Rings
361(10)
11.2 The Field of Quotients
371(9)
11.3 Complex Numbers
380(16)
11.4 Ordered Commutative Rings
396(11)
12 Unique Factorization
407(44)
12.1 Factorization of Polynomials
407(12)
12.2 Unique Factorization Domains
419(12)
12.3 Principal Ideal Domains
431(8)
12.4 Euclidean Domains
439(12)
13 Finite Division Rings
451(42)
13.1 Entering Finite Fields in Sage
451(5)
13.2 Properties of Finite Fields
456(12)
13.3 Cyclotomic Polynomials
468(14)
13.4 Finite Skew Fields
482(11)
14 The Theory of Fields
493(30)
14.1 Vector Spaces
493(9)
14.2 Extension Fields
502(8)
14.3 Splitting Fields
510(13)
15 Galois Theory
523(42)
15.1 The Galois Group of an Extension Field
523(12)
15.2 The Galois Group of a Polynomial in Q
535(11)
15.3 The Fundamental Theorem of Galois Theory
546(9)
15.4 Applications of Galois Theory
555(10)
Appendix: Sage vs. Mathematica® 565(8)
Answers to Odd-Numbered Problems 573(38)
Bibliography 611(2)
Index 613
William Paulsen, PhD, professor of mathematics, Arkansas State University, USA