Muutke küpsiste eelistusi

E-raamat: Additive Manufacturing Technologies

  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Nov-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030561277
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 10-Nov-2020
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030561277

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook covers in detail digitally-driven methods for adding materials together to form parts. A conceptual overview of additive manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Well-established and emerging applications such as rapid prototyping, micro-scale manufacturing, medical applications, aerospace manufacturing, rapid tooling and direct digital manufacturing are also discussed. This book provides a comprehensive overview of additive manufacturing technologies as well as relevant supporting technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems.









Reflects recent developments and trends and adheres to the ASTM, SI and other standards; Includes chapters on topics that span the entire AM value chain, including process selection, software, post-processing, industrial drivers for AM, and more; Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.

















 
1 Introduction and Basic Principles
1(22)
1.1 What Is Additive Manufacturing?
1(2)
1.2 What Are AM Parts Used For?
3(1)
1.3 The Generic AM Process
3(3)
1.3.1 Step 1: CAD
4(1)
1.3.2 Step 2: Conversion to STL
5(1)
1.3.3 Step 3: Transfer to AM Machine and STL File Manipulation
5(1)
1.3.4 Step 4: Machine Setup
5(1)
1.3.5 Step 5: Build
5(1)
1.3.6 Step 6: Removal
5(1)
1.3.7 Step 7: Post-Processing
6(1)
1.3.8 Step 8: Application
6(1)
1.4 Why Use the Term Additive Manufacturing?
6(3)
1.4.1 Automated Fabrication (Autofab)
7(1)
1.4.2 Freeform Fabrication or Solid Freeform Fabrication
7(1)
1.4.3 Additive Manufacturing or Layer-Based Manufacturing
7(1)
1.4.4 Rapid Prototyping
8(1)
1.4.5 Stereolithography or 3D Printing
8(1)
1.5 The Benefits of AM
9(1)
1.6 Distinction Between AM and Conventional Manufacturing Processes
10(3)
1.6.1 Material
10(1)
1.6.2 Speed
10(1)
1.6.3 Complexity
11(1)
1.6.4 Accuracy
11(1)
1.6.5 Geometry
12(1)
1.6.6 Programming
12(1)
1.7 Example AM Parts
13(1)
1.8 Other Related Technologies
14(4)
1.8.1 Reverse Engineering Technology
14(1)
1.8.2 Computer-Aided Engineering/Technologies (CAX)
15(1)
1.8.3 Haptic-Based CAD
16(2)
1.9 About This Book
18(1)
1.10 Questions
19(4)
References
21(2)
2 Development of Additive Manufacturing Technology
23(30)
2.1 Introduction
23(1)
2.2 Computers
24(2)
2.3 Computer-Aided Design Technology
26(4)
2.4 Other Associated Technologies
30(2)
2.4.1 Printing Technologies
30(1)
2.4.2 Programmable Logic Controllers
31(1)
2.4.3 Materials
31(1)
2.4.4 Computer Numerically Controlled Machining
31(1)
2.5 The Use of Layers
32(1)
2.6 Classification of AM Processes
33(6)
2.6.1 Liquid Polymer Systems
35(1)
2.6.2 Discrete Particle Systems
35(1)
2.6.3 Molten Material Systems
36(1)
2.6.4 Solid Sheet Systems
37(1)
2.6.5 New AM Classification Schemes
38(1)
2.7 Heat Sources
39(3)
2.7.1 Lasers
39(2)
2.7.2 Electron Beam
41(1)
2.7.3 Electric Arc/Plasma Arc
41(1)
2.8 Metal Systems
42(1)
2.9 Hybrid Systems
42(1)
2.10 Milestones in AM Development
43(2)
2.11 AM around the World
45(2)
2.12 AM Standards
47(1)
2.13 The Future? Rapid Prototyping Develops into Direct Digital Manufacturing
48(1)
2.14 Questions
49(4)
References
50(3)
3 Generalized Additive Manufacturing Process Chain
53(24)
3.1 Introduction
53(1)
3.2 The Eight Steps in Additive Manufacture
54(6)
3.2.1 Step 1: Conceptualization and CAD
54(2)
3.2.2 Step 2: Conversion to STL/AMF
56(1)
3.2.3 Step 3: Transfer to AM Machine and STL File Manipulation
57(1)
3.2.4 Step 4: Machine Setup
58(1)
3.2.5 Step 5: Build
58(1)
3.2.6 Step 6: Removal and Cleanup
59(1)
3.2.7 Step 7: Post-processing
59(1)
3.2.8 Step 8: Application
60(1)
3.3 Variations from One AM Machine to Another
60(3)
3.3.1 Photopolymer-Based Systems
61(1)
3.3.2 Powder-Based Systems
62(1)
3.3.3 Molten Material Systems
62(1)
3.3.4 Solid Sheets
63(1)
3.4 Metal Systems
63(3)
3.4.1 The Use of Substrates
63(1)
3.4.2 Energy Density
64(1)
3.4.3 Weight
64(1)
3.4.4 Accuracy
65(1)
3.4.5 Speed
65(1)
3.4.6 Build Rate
66(1)
3.5 Maintenance of Equipment
66(1)
3.6 Materials Handling Issues
66(2)
3.7 Design for AM
68(3)
3.7.1 Part Orientation
68(1)
3.7.2 Removal of Supports
69(1)
3.7.3 Hollowing Out Parts
69(1)
3.7.4 Inclusion of Undercuts and Other Manufacturing Constraining Features
69(1)
3.7.5 Interlocking Features
70(1)
3.7.6 Reduction of Part Count in an Assembly
71(1)
3.7.7 Identification Markings/Numbers
71(1)
3.8 Application Areas for AM-Enabled Product Development
71(2)
3.8.1 Medical Modeling
72(1)
3.8.2 Reverse Engineering Data
72(1)
3.8.3 Architectural Modeling
72(1)
3.8.4 Automotive
72(1)
3.8.5 Aerospace
73(1)
3.9 Further Discussion
73(1)
3.10 Questions
74(3)
References
75(2)
4 Vat Photopolymerization
77(48)
4.1 Introduction
77(2)
4.2 Vat Photopolymerization Materials
79(8)
4.2.1 UV Curable Photopolymers
79(2)
4.2.2 Overview of Photopolymer Chemistry
81(2)
4.2.3 Resin Formulations and Reaction Mechanisms
83(4)
4.3 Reaction Rates
87(1)
4.4 Laser Scan Vat Photopolymerization
87(1)
4.5 Photopolymerization Process Modeling
88(8)
4.5.1 Irradiance and Exposure
89(2)
4.5.2 Laser-Resin Interaction
91(3)
4.5.3 Photospeed
94(1)
4.5.4 Time Scales
95(1)
4.6 Vector Scan VPP Machines
96(2)
4.7 Scan Patterns
98(9)
4.7.1 Layer-Based Build Phenomena and Errors
98(2)
4.7.2 Weave
100(1)
4.7.3 Star-Weave
101(2)
4.7.4 ACES Scan Pattern
103(4)
4.8 Vector Scan Micro Vat Photopolymerization
107(1)
4.9 Mask Projection VPP Technologies and Processes
108(5)
4.9.1 Mask Projection VPP Technology
108(2)
4.9.2 Commercial MPVPP Systems
110(1)
4.9.3 MPVPP Modeling
111(2)
4.9.4 Continuous Liquid Interface Production (CLIP) Technology
113(1)
4.10 Two-Photon Vat Photopolymerization
113(2)
4.11 Process Benefits and Drawbacks
115(1)
4.12 Summary
116(1)
4.13 Questions
117(8)
References
121(4)
5 Powder Bed Fusion
125(46)
5.1 Introduction
125(2)
5.2 Materials
127(3)
5.2.1 Polymers and Composites
127(1)
5.2.2 Metals and Composites
128(2)
5.2.3 Ceramics and Ceramic Composites
130(1)
5.3 Powder Fusion Mechanisms
130(11)
5.3.1 Solid-State Sintering
131(3)
5.3.2 Chemically Induced Sintering
134(1)
5.3.3 Liquid-Phase Sintering and Partial Melting
134(4)
5.3.4 Full Melting
138(1)
5.3.5 High-Speed Sintering
139(2)
5.4 Metal and Ceramic Part Fabrication
141(2)
5.4.1 Metal Parts
141(1)
5.4.2 Ceramic Parts
142(1)
5.5 Process Parameters and Analysis
143(6)
5.5.1 Process Parameters
143(2)
5.5.2 Applied Energy Correlations and Scan Patterns
145(4)
5.6 Powder Handling
149(4)
5.6.1 Powder Handling Challenges
149(1)
5.6.2 Powder Handling Systems
150(2)
5.6.3 Powder Recycling
152(1)
5.7 Powder Bed Fusion Process Variants and Commercial Machines
153(12)
5.7.1 Polymer Laser Sintering (pLS)
153(3)
5.7.2 Laser-Based Systems for Metals and Ceramics
156(3)
5.7.3 Electron Beam Powder Bed Fusion
159(4)
5.7.4 Line-Wise and Layer-Wise PBF Processes for Polymers
163(2)
5.8 Process Benefits and Drawbacks
165(2)
5.9 Summary
167(1)
5.10 Questions
167(4)
References
169(2)
6 Material Extrusion
171(32)
6.1 Introduction
171(1)
6.2 Basic Principles
172(8)
6.2.1 Material Loading
173(1)
6.2.2 Liquification
173(1)
6.2.3 Extrusion
174(2)
6.2.4 Solidification
176(1)
6.2.5 Positional Control
176(2)
6.2.6 Bonding
178(1)
6.2.7 Support Generation
179(1)
6.3 Plotting and Path Control
180(3)
6.4 Material Extrusion Machine Types
183(5)
6.4.1 MEX Machines from Stratasys
184(2)
6.4.2 Other Material Extrusion Machines
186(1)
6.4.3 Pellet-Fed Machines
187(1)
6.5 Materials
188(4)
6.6 Limitations of MEX
192(1)
6.7 Bioextrusion
193(3)
6.7.1 Gel Formation
193(1)
6.7.2 Melt Extrusion
194(1)
6.7.3 Scaffold Architectures
195(1)
6.8 Other Systems
196(3)
6.8.1 Contour Crafting
196(1)
6.8.2 Nonplanar Systems
196(1)
6.8.3 Material Extrusion of Ceramics
197(1)
6.8.4 RepRap and Fab@Home
198(1)
6.9 Questions
199(4)
References
200(3)
7 Material Jetting
203(34)
7.1 Evolution of Printing as an Additive Manufacturing Process
204(1)
7.2 Materials for Material Jetting
205(7)
7.2.1 Polymers
205(3)
7.2.2 Ceramics
208(2)
7.2.3 Metals
210(1)
7.2.4 Solution-and Dispersion-Based Deposition
211(1)
7.3 Material Processing Fundamentals
212(8)
7.3.1 Technical Challenges of MJT
212(2)
7.3.2 Droplet Formation Technologies
214(1)
7.3.3 Continuous Mode
215(2)
7.3.4 Drop-on-Demand Mode
217(1)
7.3.5 Other Droplet Formation Methods
218(2)
7.4 Cold Spray
220(1)
7.5 MJT Process Modeling
220(6)
7.6 Material Jetting Machines
226(1)
7.7 Process Parameters in Material Jetting
227(1)
7.8 Rotative Material Jetting
228(1)
7.9 Process Benefits and Drawbacks
229(1)
7.10 Summary
230(1)
7.11 Questions
231(6)
References
233(4)
8 Binder Jetting
237(16)
8.1 Introduction
237(2)
8.2 Materials
239(3)
8.2.1 Commercially Available Materials
239(2)
8.2.2 Metal and Ceramic Materials Research
241(1)
8.3 Process Variations
242(3)
8.4 BJT Machines
245(3)
8.5 Process Benefits and Drawbacks
248(2)
8.6 Summary
250(1)
8.7 Questions
251(2)
References
252(1)
9 Sheet Lamination
253(32)
9.1 Introduction
253(6)
9.1.1 Gluing or Adhesive Bonding
254(1)
9.1.2 Bond-then-Form Processes
254(2)
9.1.3 Form-then-Bond Processes
256(3)
9.2 Materials
259(1)
9.3 Material Processing Fundamentals
260(2)
9.3.1 Thermal Bonding
260(1)
9.3.2 Sheet Metal Clamping
261(1)
9.4 Ultrasonic Additive Manufacturing
262(17)
9.4.1 UAM Bond Quality
265(1)
9.4.2 UAM Process Fundamentals
266(1)
9.4.3 UAM Process Parameters and Process Optimization
267(3)
9.4.4 Microstructures and Mechanical Properties of UAM Parts
270(3)
9.4.5 UAM Applications
273(6)
9.5 Sheet Lamination Benefits and Drawbacks
279(1)
9.6 Commercial Trends
280(1)
9.7 Summary
280(1)
9.8 Questions
281(4)
References
282(3)
10 Directed Energy Deposition
285(34)
10.1 Introduction
285(2)
10.2 General Directed Energy Deposition Process Description
287(2)
10.3 Material Delivery
289(3)
10.3.1 PowOer Feeding
289(3)
10.3.2 Wire Feeding
292(1)
10.4 DED Systems
292(13)
10.4.1 Laser Powder Deposition Processes
293(5)
10.4.2 Electron Beam Based Metal Deposition Processes
298(3)
10.4.3 Wire Arc Additive Manufacturing (WAAM)
301(2)
10.4.4 Friction Stir Additive Manufacturing (FSAM)
303(2)
10.4.5 Other DED Materials and Processes
305(1)
10.5 Process Parameters
305(1)
10.6 Typical Materials and Microstructure
306(3)
10.7 Processing-Structure-Properties Relationships
309(5)
10.8 DED Benefits and Drawbacks
314(2)
10.9 Questions
316(3)
References
317(2)
11 Direct Write Technologies
319(28)
11.1 Direct Write Technologies
319(1)
11.2 Background
320(1)
11.3 Materials in Direct Write Technology
320(1)
11.4 Ink-Based DW
321(2)
11.5 Nozzle Dispensing Processes
323(5)
11.5.1 Quill-Type Processes
324(2)
11.5.2 Inkjet Printing Processes
326(1)
11.5.3 Aerosol DW
326(2)
11.6 Laser Transfer DW
328(3)
11.7 Thermal Spray DW
331(2)
11.8 Electroforming
333(1)
11.9 Beam Deposition DW
334(3)
11.9.1 Laser CVD
334(2)
11.9.2 Focused Ion Beam CVD
336(1)
11.9.3 Electron Beam CVD
337(1)
11.10 Liquid-Phase Deposition
337(1)
11.11 Beam Tracing Approaches to Additive/Subtractive DW
338(2)
11.11.1 Electron Beam Tracing
338(1)
11.11.2 Focused Ion Beam Tracing
339(1)
11.11.3 Laser Beam Tracing
339(1)
11.12 Hybrid Direct Write Technologies
340(1)
11.13 Applications of Direct Write
340(2)
11.14 Technical Challenges in Direct Write
342(1)
11.15 Questions
343(4)
References
344(3)
12 Hybrid Additive Manufacturing
347(20)
12.1 Hybrid Manufacturing
347(1)
12.2 Hybrid Manufacturing Processes
348(3)
12.3 Hybrid Additive Manufacturing Principles
351(1)
12.3.1 Inseparable Hybrid Processes
351(1)
12.3.2 Synergy in Hybrid AM
351(1)
12.3.3 Hybrid Materials
351(1)
12.3.4 Part Quality and Process Efficiency
352(1)
12.4 Sequential Hybrid AM Classification Based on Secondary Processes
352(10)
12.4.1 Hybrid AM by Machining
353(2)
12.4.2 Hybrid AM by Rolling
355(1)
12.4.3 Hybrid AM by Burnishing
356(1)
12.4.4 Hybrid AM by Friction Stir Processing
356(1)
12.4.5 Hybrid AM by Ablation or Erosion
357(1)
12.4.6 Hybrid AM by Peening
357(3)
12.4.7 Hybrid AM by Pulsed Laser Deposition
360(1)
12.4.8 Hybrid AM by Remelting
361(1)
12.4.9 Hybrid AM by Laser-Assisted Plasma Deposition
362(1)
12.5 Summary
362(1)
12.6 Questions
363(4)
References
364(3)
13 The Impact of Low-Cost AM Systems
367(12)
13.1 Introduction
367(1)
13.2 Intellectual Property
368(2)
13.3 Disruptive Innovation
370(4)
13.3.1 Disruptive Business Opportunities
370(1)
13.3.2 Media Attention
371(3)
13.4 The Maker Movement
374(2)
13.5 The Future of Low-Cost AM
376(1)
13.6 Questions
376(3)
References
377(2)
14 Materials for Additive Manufacturing
379(50)
14.1 Introduction
379(2)
14.2 Feedstock for AM Processes
381(2)
14.3 Liquid-Based Material
383(9)
14.3.1 Liquids for VPP
387(1)
14.3.2 Liquid Polymer Material for MJT and BJT
388(2)
14.3.3 Liquid Metal Material for MJT
390(1)
14.3.4 Liquid Ceramic Composite Materials for VPP and MJT
390(2)
14.3.5 Support Material
392(1)
14.3.6 Other Liquid Polymer Feedstock
392(1)
14.4 Powder-Based Materials
392(13)
14.4.1 Polymer Powder Material
393(1)
14.4.2 Metal Powder Material for PBF, DED, and BJT
394(5)
14.4.3 Ceramic Powder Material
399(3)
14.4.4 Composite Powder for AM Processes
402(3)
14.5 Solid-Based Materials
405(15)
14.5.1 Solid Polymer Feedstock for MEX
405(3)
14.5.2 Solid Metal Feedstock for DED and MEX SHL
408(5)
14.5.3 Solid Ceramic Feedstock for SHL and MEX
413(2)
14.5.4 Solid-Based Composite Materials for SHL, MEX, and DED
415(5)
14.6 Material Issues in AM
420(4)
14.6.1 Build Orientation
420(1)
14.6.2 Keyholes
421(1)
14.6.3 Chemical Degradation and Oxidation
421(1)
14.6.4 Reactive Processes
421(1)
14.6.5 Assistive Gas and Residual Particles
421(1)
14.6.6 Cracks
422(1)
14.6.7 Delamination
422(1)
14.6.8 Distortion
422(1)
14.6.9 Inclusions
423(1)
14.6.10 Poor Surface Finish
423(1)
14.6.11 Porosity
423(1)
14.6.12 Shelf Life or Lifetime of the Feedstock
423(1)
14.6.13 Support Structures
424(1)
14.7 Questions
424(5)
References
425(4)
15 Guidelines for Process Selection
429(28)
15.1 Introduction
429(1)
15.2 Selection Methods for a Part
430(8)
15.2.1 Decision Theory
430(1)
15.2.2 Approaches to Determining Feasibility
431(2)
15.2.3 Approaches to Selection
433(3)
15.2.4 Selection Example
436(2)
15.3 Challenges of Selection
438(4)
15.4 Example System for Preliminary Selection
442(6)
15.5 Production Planning and Control
448(5)
15.5.1 Production Planning
449(1)
15.5.2 Pre-Processing
449(2)
15.5.3 Part Build Time
451(1)
15.5.4 Post-Processing
452(1)
15.5.5 Summary
452(1)
15.6 Future Work
453(1)
15.7 Questions
454(3)
References
455(2)
16 Post-Processing
457(34)
16.1 Introduction
457(1)
16.2 Post-Processing to Improve Surface Quality
458(6)
16.2.1 Support Material Removal
458(4)
16.2.2 Surface Texture Improvements
462(1)
16.2.3 Aesthetic Improvements
463(1)
16.3 Post-Processing to Improve Dimensional Deviations
464(12)
16.3.1 Accuracy Improvements
464(1)
16.3.2 Sources of Inaccuracy
464(1)
16.3.3 Model Pre-Processing to Compensate for Inaccuracy
465(1)
16.3.4 Machining Strategy
466(10)
16.4 Post-Processing to Improve Mechanical Properties
476(6)
16.4.1 Property Enhancements Using Nonthermal Techniques
476(2)
16.4.2 Property Enhancements Using Thermal Techniques
478(4)
16.5 Preparation for Use as a Pattern
482(4)
16.5.1 Investment Casting Patterns
483(1)
16.5.2 Sand Casting Patterns
484(1)
16.5.3 Other Pattern Replication Methods
485(1)
16.6 Summary
486(1)
16.7 Questions
487(4)
References
487(4)
17 Software for Additive Manufacturing
491(34)
17.1 Introduction
491(1)
17.2 AM Software for STL Editing
492(5)
17.2.1 Preparation of CAD Models: The STL File
493(4)
17.3 AM Software for Slicing
497(7)
17.3.1 Calculation of Each Slice Profile
498(4)
17.3.2 Technology-Specific Elements
502(2)
17.4 AM Software for STL Manipulation
504(4)
17.4.1 STL File Manipulation
505(2)
17.4.2 Mesh Healing
507(1)
17.4.3 Surface Offsetting
507(1)
17.4.4 STL Manipulation on the AM Machine
508(1)
17.5 Problems with STL Files
508(3)
17.6 Beyond the STL File
511(2)
17.6.1 Direct Slicing of the CAD Model
511(1)
17.6.2 Color Models
512(1)
17.6.3 Multiple Materials
512(1)
17.6.4 Use of STL for Machining
512(1)
17.7 AM Software for Process Visualization and Collision Detection
513(1)
17.8 AM Software for Topology Optimization
514(2)
17.9 AM Software for Modeling and Simulation
516(2)
17.10 Manufacturing Execution System Software for AM
518(2)
17.11 The Additive Manufacturing File (AMF) Format
520(2)
17.12 Questions
522(3)
References
522(3)
18 Direct Digital Manufacturing
525(30)
18.1 Introduction
525(1)
18.2 Early DDM Examples
526(5)
18.2.1 Align Technology
527(1)
18.2.2 Siemens and Phonak
528(2)
18.2.3 Polymer Aerospace Parts
530(1)
18.3 Applications of DDM
531(7)
18.3.1 Aerospace and Power Generation Industries
532(2)
18.3.2 Automotive Industry
534(1)
18.3.3 Medical Industry
535(1)
18.3.4 Consumer Industries
536(2)
18.4 DDM Drivers
538(2)
18.5 Manufacturing Versus Prototyping
540(2)
18.6 Cost Estimation
542(6)
18.6.1 Cost Model
542(2)
18.6.2 Build Time Model
544(3)
18.6.3 Laser Scanning Vat Photopolymerization Example
547(1)
18.7 Life-Cycle Costing
548(2)
18.8 Future of Direct Digital Manufacturing
550(1)
18.9 Questions
551(4)
References
553(2)
19 Design for Additive Manufacturing
555(54)
19.1 Introduction
555(1)
19.2 Design for Manufacturing and Assembly
556(3)
19.3 Core DFAM Concepts and Objectives
559(8)
19.3.1 Opportunistic vs. Restrictive DFAM
559(1)
19.3.2 AM Unique Capabilities
560(1)
19.3.3 Shape Complexity
560(1)
19.3.4 Hierarchical Complexity
561(2)
19.3.5 Functional Complexity
563(2)
19.3.6 Material Complexity
565(2)
19.4 Design Opportunities
567(11)
19.4.1 Part Consolidation Overview
567(2)
19.4.2 Design for Function
569(2)
19.4.3 Part Consolidation Consequences
571(1)
19.4.4 Customized Geometry
572(1)
19.4.5 Hierarchical Structures
572(2)
19.4.6 Multifunctional Designs
574(1)
19.4.7 Elimination of Conventional DFM Constraints
575(1)
19.4.8 Industrial Design Applications
576(2)
19.4.9 Role of Design Standards
578(1)
19.5 Design for Four-Dimensional (4D) Printing
578(5)
19.5.1 Definition of 4D Printing
579(1)
19.5.2 Shape-Shifting Mechanisms and Stimuli
580(1)
19.5.3 Shape-Shifting Types and Dimensions
581(2)
19.6 Computer-Aided Design Tools for AM
583(8)
19.6.1 Challenges for CAD
583(1)
19.6.2 Solid Modeling CAD Technologies
584(2)
19.6.3 Commercial CAD Capabilities
586(1)
19.6.4 Prototypical DFAM System
587(4)
19.7 Design Space Exploration
591(3)
19.7.1 Design of Experiments
591(2)
19.7.2 Design Exploration Software
593(1)
19.8 Synthesis Methods
594(10)
19.8.1 Theoretically Optimal Lightweight Structures
594(1)
19.8.2 Optimization Methods
595(1)
19.8.3 Topology Optimization
596(8)
19.9 Summary
604(1)
19.10 Questions
604(5)
References
605(4)
20 Rapid Tooling
609(14)
20.1 Introduction
609(2)
20.2 Direct AM Production of Injection Molding Inserts
611(5)
20.3 EDM Electrodes
616(1)
20.4 Investment Casting
616(2)
20.5 Other Systems
618(2)
20.5.1 Vacuum Forming Tools
618(1)
20.5.2 Paper Pulp Molding Tools
618(1)
20.5.3 Formwork for Composite Manufacture
619(1)
20.5.4 Assembly Tools and Metrology Registration Rigs
620(1)
20.6 Questions
620(3)
References
621(2)
21 Industrial Drivers for AM Adoption
623(26)
21.1 Introduction
623(1)
21.2 Historical Developments
624(3)
21.2.1 Value of Physical Models
624(1)
21.2.2 Functional Testing
625(1)
21.2.3 Rapid Tooling
626(1)
21.3 The Use of AM to Support Medical Applications
627(6)
21.3.1 Surgical and Diagnostic Aids
628(2)
21.3.2 Prosthetics and Implants
630(2)
21.3.3 Tissue Engineering and Organ Printing
632(1)
21.4 Software Tools and Surgical Guides for Medical Applications
633(1)
21.5 Limitations of AM for Medical Applications
634(3)
21.5.1 Speed
635(1)
21.5.2 Cost
636(1)
21.5.3 Accuracy
636(1)
21.5.4 Materials
637(1)
21.5.5 Ease of Use
637(1)
21.6 Further Development of Medical AM Applications
637(3)
21.6.1 Approvals
638(1)
21.6.2 Insurance
638(1)
21.6.3 Engineering Training
639(1)
21.6.4 Location of the Technology
639(1)
21.6.5 Service Bureaus
639(1)
21.7 Aerospace Applications
640(4)
21.7.1 Characteristics Favoring AM
640(1)
21.7.2 Production Manufacture
641(3)
21.8 Automotive Applications
644(1)
21.9 Questions
645(4)
References
646(3)
22 Business and Societal Implications of AM
649(14)
22.1 Introduction
649(2)
22.2 What Could Be New?
651(6)
22.2.1 New Types of Products
651(2)
22.2.2 New Types of Organizations
653(3)
22.2.3 New Types of Employment
656(1)
22.3 Digiproneurship
657(3)
22.4 Summary
660(1)
22.5 Questions
661(2)
References
661(2)
Index 663
Professor Ian Gibson is a Professor of Industrial Design and Director of the Fraunhofer Project Centre at The University of Twente.

Professor David W. Rosen is a Professor at the Georgia Institute of Technology and Research Director of the Digital Manufacturing and Design Centre at the Singapore University of Technology and Design.



Dr. Brent Stucker is a Distinguished Engineer in Additive Manufacturing at ANSYS.



Dr. Mahyar Khorasani is a Vice-Chancellor Research Fellow in Additive Manufacturing at Deakin University.