|
1 Introduction and Basic Principles |
|
|
1 | (22) |
|
1.1 What Is Additive Manufacturing? |
|
|
1 | (2) |
|
1.2 What Are AM Parts Used For? |
|
|
3 | (1) |
|
1.3 The Generic AM Process |
|
|
3 | (3) |
|
|
4 | (1) |
|
1.3.2 Step 2: Conversion to STL |
|
|
5 | (1) |
|
1.3.3 Step 3: Transfer to AM Machine and STL File Manipulation |
|
|
5 | (1) |
|
1.3.4 Step 4: Machine Setup |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.3.7 Step 7: Post-Processing |
|
|
6 | (1) |
|
1.3.8 Step 8: Application |
|
|
6 | (1) |
|
1.4 Why Use the Term Additive Manufacturing? |
|
|
6 | (3) |
|
1.4.1 Automated Fabrication (Autofab) |
|
|
7 | (1) |
|
1.4.2 Freeform Fabrication or Solid Freeform Fabrication |
|
|
7 | (1) |
|
1.4.3 Additive Manufacturing or Layer-Based Manufacturing |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.4.5 Stereolithography or 3D Printing |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.6 Distinction Between AM and Conventional Manufacturing Processes |
|
|
10 | (3) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (1) |
|
1.8 Other Related Technologies |
|
|
14 | (4) |
|
1.8.1 Reverse Engineering Technology |
|
|
14 | (1) |
|
1.8.2 Computer-Aided Engineering/Technologies (CAX) |
|
|
15 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (4) |
|
|
21 | (2) |
|
2 Development of Additive Manufacturing Technology |
|
|
23 | (30) |
|
|
23 | (1) |
|
|
24 | (2) |
|
2.3 Computer-Aided Design Technology |
|
|
26 | (4) |
|
2.4 Other Associated Technologies |
|
|
30 | (2) |
|
2.4.1 Printing Technologies |
|
|
30 | (1) |
|
2.4.2 Programmable Logic Controllers |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.4.4 Computer Numerically Controlled Machining |
|
|
31 | (1) |
|
|
32 | (1) |
|
2.6 Classification of AM Processes |
|
|
33 | (6) |
|
2.6.1 Liquid Polymer Systems |
|
|
35 | (1) |
|
2.6.2 Discrete Particle Systems |
|
|
35 | (1) |
|
2.6.3 Molten Material Systems |
|
|
36 | (1) |
|
2.6.4 Solid Sheet Systems |
|
|
37 | (1) |
|
2.6.5 New AM Classification Schemes |
|
|
38 | (1) |
|
|
39 | (3) |
|
|
39 | (2) |
|
|
41 | (1) |
|
2.7.3 Electric Arc/Plasma Arc |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
2.10 Milestones in AM Development |
|
|
43 | (2) |
|
|
45 | (2) |
|
|
47 | (1) |
|
2.13 The Future? Rapid Prototyping Develops into Direct Digital Manufacturing |
|
|
48 | (1) |
|
|
49 | (4) |
|
|
50 | (3) |
|
3 Generalized Additive Manufacturing Process Chain |
|
|
53 | (24) |
|
|
53 | (1) |
|
3.2 The Eight Steps in Additive Manufacture |
|
|
54 | (6) |
|
3.2.1 Step 1: Conceptualization and CAD |
|
|
54 | (2) |
|
3.2.2 Step 2: Conversion to STL/AMF |
|
|
56 | (1) |
|
3.2.3 Step 3: Transfer to AM Machine and STL File Manipulation |
|
|
57 | (1) |
|
3.2.4 Step 4: Machine Setup |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.2.6 Step 6: Removal and Cleanup |
|
|
59 | (1) |
|
3.2.7 Step 7: Post-processing |
|
|
59 | (1) |
|
3.2.8 Step 8: Application |
|
|
60 | (1) |
|
3.3 Variations from One AM Machine to Another |
|
|
60 | (3) |
|
3.3.1 Photopolymer-Based Systems |
|
|
61 | (1) |
|
3.3.2 Powder-Based Systems |
|
|
62 | (1) |
|
3.3.3 Molten Material Systems |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (3) |
|
3.4.1 The Use of Substrates |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
3.5 Maintenance of Equipment |
|
|
66 | (1) |
|
3.6 Materials Handling Issues |
|
|
66 | (2) |
|
|
68 | (3) |
|
|
68 | (1) |
|
3.7.2 Removal of Supports |
|
|
69 | (1) |
|
3.7.3 Hollowing Out Parts |
|
|
69 | (1) |
|
3.7.4 Inclusion of Undercuts and Other Manufacturing Constraining Features |
|
|
69 | (1) |
|
3.7.5 Interlocking Features |
|
|
70 | (1) |
|
3.7.6 Reduction of Part Count in an Assembly |
|
|
71 | (1) |
|
3.7.7 Identification Markings/Numbers |
|
|
71 | (1) |
|
3.8 Application Areas for AM-Enabled Product Development |
|
|
71 | (2) |
|
|
72 | (1) |
|
3.8.2 Reverse Engineering Data |
|
|
72 | (1) |
|
3.8.3 Architectural Modeling |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
75 | (2) |
|
4 Vat Photopolymerization |
|
|
77 | (48) |
|
|
77 | (2) |
|
4.2 Vat Photopolymerization Materials |
|
|
79 | (8) |
|
4.2.1 UV Curable Photopolymers |
|
|
79 | (2) |
|
4.2.2 Overview of Photopolymer Chemistry |
|
|
81 | (2) |
|
4.2.3 Resin Formulations and Reaction Mechanisms |
|
|
83 | (4) |
|
|
87 | (1) |
|
4.4 Laser Scan Vat Photopolymerization |
|
|
87 | (1) |
|
4.5 Photopolymerization Process Modeling |
|
|
88 | (8) |
|
4.5.1 Irradiance and Exposure |
|
|
89 | (2) |
|
4.5.2 Laser-Resin Interaction |
|
|
91 | (3) |
|
|
94 | (1) |
|
|
95 | (1) |
|
4.6 Vector Scan VPP Machines |
|
|
96 | (2) |
|
|
98 | (9) |
|
4.7.1 Layer-Based Build Phenomena and Errors |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (2) |
|
|
103 | (4) |
|
4.8 Vector Scan Micro Vat Photopolymerization |
|
|
107 | (1) |
|
4.9 Mask Projection VPP Technologies and Processes |
|
|
108 | (5) |
|
4.9.1 Mask Projection VPP Technology |
|
|
108 | (2) |
|
4.9.2 Commercial MPVPP Systems |
|
|
110 | (1) |
|
|
111 | (2) |
|
4.9.4 Continuous Liquid Interface Production (CLIP) Technology |
|
|
113 | (1) |
|
4.10 Two-Photon Vat Photopolymerization |
|
|
113 | (2) |
|
4.11 Process Benefits and Drawbacks |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (8) |
|
|
121 | (4) |
|
|
125 | (46) |
|
|
125 | (2) |
|
|
127 | (3) |
|
5.2.1 Polymers and Composites |
|
|
127 | (1) |
|
5.2.2 Metals and Composites |
|
|
128 | (2) |
|
5.2.3 Ceramics and Ceramic Composites |
|
|
130 | (1) |
|
5.3 Powder Fusion Mechanisms |
|
|
130 | (11) |
|
5.3.1 Solid-State Sintering |
|
|
131 | (3) |
|
5.3.2 Chemically Induced Sintering |
|
|
134 | (1) |
|
5.3.3 Liquid-Phase Sintering and Partial Melting |
|
|
134 | (4) |
|
|
138 | (1) |
|
5.3.5 High-Speed Sintering |
|
|
139 | (2) |
|
5.4 Metal and Ceramic Part Fabrication |
|
|
141 | (2) |
|
|
141 | (1) |
|
|
142 | (1) |
|
5.5 Process Parameters and Analysis |
|
|
143 | (6) |
|
|
143 | (2) |
|
5.5.2 Applied Energy Correlations and Scan Patterns |
|
|
145 | (4) |
|
|
149 | (4) |
|
5.6.1 Powder Handling Challenges |
|
|
149 | (1) |
|
5.6.2 Powder Handling Systems |
|
|
150 | (2) |
|
|
152 | (1) |
|
5.7 Powder Bed Fusion Process Variants and Commercial Machines |
|
|
153 | (12) |
|
5.7.1 Polymer Laser Sintering (pLS) |
|
|
153 | (3) |
|
5.7.2 Laser-Based Systems for Metals and Ceramics |
|
|
156 | (3) |
|
5.7.3 Electron Beam Powder Bed Fusion |
|
|
159 | (4) |
|
5.7.4 Line-Wise and Layer-Wise PBF Processes for Polymers |
|
|
163 | (2) |
|
5.8 Process Benefits and Drawbacks |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
167 | (4) |
|
|
169 | (2) |
|
|
171 | (32) |
|
|
171 | (1) |
|
|
172 | (8) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (1) |
|
6.3 Plotting and Path Control |
|
|
180 | (3) |
|
6.4 Material Extrusion Machine Types |
|
|
183 | (5) |
|
6.4.1 MEX Machines from Stratasys |
|
|
184 | (2) |
|
6.4.2 Other Material Extrusion Machines |
|
|
186 | (1) |
|
6.4.3 Pellet-Fed Machines |
|
|
187 | (1) |
|
|
188 | (4) |
|
|
192 | (1) |
|
|
193 | (3) |
|
|
193 | (1) |
|
|
194 | (1) |
|
6.7.3 Scaffold Architectures |
|
|
195 | (1) |
|
|
196 | (3) |
|
|
196 | (1) |
|
|
196 | (1) |
|
6.8.3 Material Extrusion of Ceramics |
|
|
197 | (1) |
|
6.8.4 RepRap and Fab@Home |
|
|
198 | (1) |
|
|
199 | (4) |
|
|
200 | (3) |
|
|
203 | (34) |
|
7.1 Evolution of Printing as an Additive Manufacturing Process |
|
|
204 | (1) |
|
7.2 Materials for Material Jetting |
|
|
205 | (7) |
|
|
205 | (3) |
|
|
208 | (2) |
|
|
210 | (1) |
|
7.2.4 Solution-and Dispersion-Based Deposition |
|
|
211 | (1) |
|
7.3 Material Processing Fundamentals |
|
|
212 | (8) |
|
7.3.1 Technical Challenges of MJT |
|
|
212 | (2) |
|
7.3.2 Droplet Formation Technologies |
|
|
214 | (1) |
|
|
215 | (2) |
|
7.3.4 Drop-on-Demand Mode |
|
|
217 | (1) |
|
7.3.5 Other Droplet Formation Methods |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
220 | (6) |
|
7.6 Material Jetting Machines |
|
|
226 | (1) |
|
7.7 Process Parameters in Material Jetting |
|
|
227 | (1) |
|
7.8 Rotative Material Jetting |
|
|
228 | (1) |
|
7.9 Process Benefits and Drawbacks |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (6) |
|
|
233 | (4) |
|
|
237 | (16) |
|
|
237 | (2) |
|
|
239 | (3) |
|
8.2.1 Commercially Available Materials |
|
|
239 | (2) |
|
8.2.2 Metal and Ceramic Materials Research |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
245 | (3) |
|
8.5 Process Benefits and Drawbacks |
|
|
248 | (2) |
|
|
250 | (1) |
|
|
251 | (2) |
|
|
252 | (1) |
|
|
253 | (32) |
|
|
253 | (6) |
|
9.1.1 Gluing or Adhesive Bonding |
|
|
254 | (1) |
|
9.1.2 Bond-then-Form Processes |
|
|
254 | (2) |
|
9.1.3 Form-then-Bond Processes |
|
|
256 | (3) |
|
|
259 | (1) |
|
9.3 Material Processing Fundamentals |
|
|
260 | (2) |
|
|
260 | (1) |
|
9.3.2 Sheet Metal Clamping |
|
|
261 | (1) |
|
9.4 Ultrasonic Additive Manufacturing |
|
|
262 | (17) |
|
|
265 | (1) |
|
9.4.2 UAM Process Fundamentals |
|
|
266 | (1) |
|
9.4.3 UAM Process Parameters and Process Optimization |
|
|
267 | (3) |
|
9.4.4 Microstructures and Mechanical Properties of UAM Parts |
|
|
270 | (3) |
|
|
273 | (6) |
|
9.5 Sheet Lamination Benefits and Drawbacks |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (4) |
|
|
282 | (3) |
|
10 Directed Energy Deposition |
|
|
285 | (34) |
|
|
285 | (2) |
|
10.2 General Directed Energy Deposition Process Description |
|
|
287 | (2) |
|
|
289 | (3) |
|
|
289 | (3) |
|
|
292 | (1) |
|
|
292 | (13) |
|
10.4.1 Laser Powder Deposition Processes |
|
|
293 | (5) |
|
10.4.2 Electron Beam Based Metal Deposition Processes |
|
|
298 | (3) |
|
10.4.3 Wire Arc Additive Manufacturing (WAAM) |
|
|
301 | (2) |
|
10.4.4 Friction Stir Additive Manufacturing (FSAM) |
|
|
303 | (2) |
|
10.4.5 Other DED Materials and Processes |
|
|
305 | (1) |
|
|
305 | (1) |
|
10.6 Typical Materials and Microstructure |
|
|
306 | (3) |
|
10.7 Processing-Structure-Properties Relationships |
|
|
309 | (5) |
|
10.8 DED Benefits and Drawbacks |
|
|
314 | (2) |
|
|
316 | (3) |
|
|
317 | (2) |
|
11 Direct Write Technologies |
|
|
319 | (28) |
|
11.1 Direct Write Technologies |
|
|
319 | (1) |
|
|
320 | (1) |
|
11.3 Materials in Direct Write Technology |
|
|
320 | (1) |
|
|
321 | (2) |
|
11.5 Nozzle Dispensing Processes |
|
|
323 | (5) |
|
11.5.1 Quill-Type Processes |
|
|
324 | (2) |
|
11.5.2 Inkjet Printing Processes |
|
|
326 | (1) |
|
|
326 | (2) |
|
|
328 | (3) |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
334 | (3) |
|
|
334 | (2) |
|
11.9.2 Focused Ion Beam CVD |
|
|
336 | (1) |
|
|
337 | (1) |
|
11.10 Liquid-Phase Deposition |
|
|
337 | (1) |
|
11.11 Beam Tracing Approaches to Additive/Subtractive DW |
|
|
338 | (2) |
|
11.11.1 Electron Beam Tracing |
|
|
338 | (1) |
|
11.11.2 Focused Ion Beam Tracing |
|
|
339 | (1) |
|
11.11.3 Laser Beam Tracing |
|
|
339 | (1) |
|
11.12 Hybrid Direct Write Technologies |
|
|
340 | (1) |
|
11.13 Applications of Direct Write |
|
|
340 | (2) |
|
11.14 Technical Challenges in Direct Write |
|
|
342 | (1) |
|
|
343 | (4) |
|
|
344 | (3) |
|
12 Hybrid Additive Manufacturing |
|
|
347 | (20) |
|
12.1 Hybrid Manufacturing |
|
|
347 | (1) |
|
12.2 Hybrid Manufacturing Processes |
|
|
348 | (3) |
|
12.3 Hybrid Additive Manufacturing Principles |
|
|
351 | (1) |
|
12.3.1 Inseparable Hybrid Processes |
|
|
351 | (1) |
|
12.3.2 Synergy in Hybrid AM |
|
|
351 | (1) |
|
|
351 | (1) |
|
12.3.4 Part Quality and Process Efficiency |
|
|
352 | (1) |
|
12.4 Sequential Hybrid AM Classification Based on Secondary Processes |
|
|
352 | (10) |
|
12.4.1 Hybrid AM by Machining |
|
|
353 | (2) |
|
12.4.2 Hybrid AM by Rolling |
|
|
355 | (1) |
|
12.4.3 Hybrid AM by Burnishing |
|
|
356 | (1) |
|
12.4.4 Hybrid AM by Friction Stir Processing |
|
|
356 | (1) |
|
12.4.5 Hybrid AM by Ablation or Erosion |
|
|
357 | (1) |
|
12.4.6 Hybrid AM by Peening |
|
|
357 | (3) |
|
12.4.7 Hybrid AM by Pulsed Laser Deposition |
|
|
360 | (1) |
|
12.4.8 Hybrid AM by Remelting |
|
|
361 | (1) |
|
12.4.9 Hybrid AM by Laser-Assisted Plasma Deposition |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
363 | (4) |
|
|
364 | (3) |
|
13 The Impact of Low-Cost AM Systems |
|
|
367 | (12) |
|
|
367 | (1) |
|
13.2 Intellectual Property |
|
|
368 | (2) |
|
13.3 Disruptive Innovation |
|
|
370 | (4) |
|
13.3.1 Disruptive Business Opportunities |
|
|
370 | (1) |
|
|
371 | (3) |
|
|
374 | (2) |
|
13.5 The Future of Low-Cost AM |
|
|
376 | (1) |
|
|
376 | (3) |
|
|
377 | (2) |
|
14 Materials for Additive Manufacturing |
|
|
379 | (50) |
|
|
379 | (2) |
|
14.2 Feedstock for AM Processes |
|
|
381 | (2) |
|
14.3 Liquid-Based Material |
|
|
383 | (9) |
|
|
387 | (1) |
|
14.3.2 Liquid Polymer Material for MJT and BJT |
|
|
388 | (2) |
|
14.3.3 Liquid Metal Material for MJT |
|
|
390 | (1) |
|
14.3.4 Liquid Ceramic Composite Materials for VPP and MJT |
|
|
390 | (2) |
|
|
392 | (1) |
|
14.3.6 Other Liquid Polymer Feedstock |
|
|
392 | (1) |
|
14.4 Powder-Based Materials |
|
|
392 | (13) |
|
14.4.1 Polymer Powder Material |
|
|
393 | (1) |
|
14.4.2 Metal Powder Material for PBF, DED, and BJT |
|
|
394 | (5) |
|
14.4.3 Ceramic Powder Material |
|
|
399 | (3) |
|
14.4.4 Composite Powder for AM Processes |
|
|
402 | (3) |
|
14.5 Solid-Based Materials |
|
|
405 | (15) |
|
14.5.1 Solid Polymer Feedstock for MEX |
|
|
405 | (3) |
|
14.5.2 Solid Metal Feedstock for DED and MEX SHL |
|
|
408 | (5) |
|
14.5.3 Solid Ceramic Feedstock for SHL and MEX |
|
|
413 | (2) |
|
14.5.4 Solid-Based Composite Materials for SHL, MEX, and DED |
|
|
415 | (5) |
|
14.6 Material Issues in AM |
|
|
420 | (4) |
|
|
420 | (1) |
|
|
421 | (1) |
|
14.6.3 Chemical Degradation and Oxidation |
|
|
421 | (1) |
|
14.6.4 Reactive Processes |
|
|
421 | (1) |
|
14.6.5 Assistive Gas and Residual Particles |
|
|
421 | (1) |
|
|
422 | (1) |
|
|
422 | (1) |
|
|
422 | (1) |
|
|
423 | (1) |
|
14.6.10 Poor Surface Finish |
|
|
423 | (1) |
|
|
423 | (1) |
|
14.6.12 Shelf Life or Lifetime of the Feedstock |
|
|
423 | (1) |
|
14.6.13 Support Structures |
|
|
424 | (1) |
|
|
424 | (5) |
|
|
425 | (4) |
|
15 Guidelines for Process Selection |
|
|
429 | (28) |
|
|
429 | (1) |
|
15.2 Selection Methods for a Part |
|
|
430 | (8) |
|
|
430 | (1) |
|
15.2.2 Approaches to Determining Feasibility |
|
|
431 | (2) |
|
15.2.3 Approaches to Selection |
|
|
433 | (3) |
|
|
436 | (2) |
|
15.3 Challenges of Selection |
|
|
438 | (4) |
|
15.4 Example System for Preliminary Selection |
|
|
442 | (6) |
|
15.5 Production Planning and Control |
|
|
448 | (5) |
|
15.5.1 Production Planning |
|
|
449 | (1) |
|
|
449 | (2) |
|
|
451 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
454 | (3) |
|
|
455 | (2) |
|
|
457 | (34) |
|
|
457 | (1) |
|
16.2 Post-Processing to Improve Surface Quality |
|
|
458 | (6) |
|
16.2.1 Support Material Removal |
|
|
458 | (4) |
|
16.2.2 Surface Texture Improvements |
|
|
462 | (1) |
|
16.2.3 Aesthetic Improvements |
|
|
463 | (1) |
|
16.3 Post-Processing to Improve Dimensional Deviations |
|
|
464 | (12) |
|
16.3.1 Accuracy Improvements |
|
|
464 | (1) |
|
16.3.2 Sources of Inaccuracy |
|
|
464 | (1) |
|
16.3.3 Model Pre-Processing to Compensate for Inaccuracy |
|
|
465 | (1) |
|
16.3.4 Machining Strategy |
|
|
466 | (10) |
|
16.4 Post-Processing to Improve Mechanical Properties |
|
|
476 | (6) |
|
16.4.1 Property Enhancements Using Nonthermal Techniques |
|
|
476 | (2) |
|
16.4.2 Property Enhancements Using Thermal Techniques |
|
|
478 | (4) |
|
16.5 Preparation for Use as a Pattern |
|
|
482 | (4) |
|
16.5.1 Investment Casting Patterns |
|
|
483 | (1) |
|
16.5.2 Sand Casting Patterns |
|
|
484 | (1) |
|
16.5.3 Other Pattern Replication Methods |
|
|
485 | (1) |
|
|
486 | (1) |
|
|
487 | (4) |
|
|
487 | (4) |
|
17 Software for Additive Manufacturing |
|
|
491 | (34) |
|
|
491 | (1) |
|
17.2 AM Software for STL Editing |
|
|
492 | (5) |
|
17.2.1 Preparation of CAD Models: The STL File |
|
|
493 | (4) |
|
17.3 AM Software for Slicing |
|
|
497 | (7) |
|
17.3.1 Calculation of Each Slice Profile |
|
|
498 | (4) |
|
17.3.2 Technology-Specific Elements |
|
|
502 | (2) |
|
17.4 AM Software for STL Manipulation |
|
|
504 | (4) |
|
17.4.1 STL File Manipulation |
|
|
505 | (2) |
|
|
507 | (1) |
|
17.4.3 Surface Offsetting |
|
|
507 | (1) |
|
17.4.4 STL Manipulation on the AM Machine |
|
|
508 | (1) |
|
17.5 Problems with STL Files |
|
|
508 | (3) |
|
|
511 | (2) |
|
17.6.1 Direct Slicing of the CAD Model |
|
|
511 | (1) |
|
|
512 | (1) |
|
17.6.3 Multiple Materials |
|
|
512 | (1) |
|
17.6.4 Use of STL for Machining |
|
|
512 | (1) |
|
17.7 AM Software for Process Visualization and Collision Detection |
|
|
513 | (1) |
|
17.8 AM Software for Topology Optimization |
|
|
514 | (2) |
|
17.9 AM Software for Modeling and Simulation |
|
|
516 | (2) |
|
17.10 Manufacturing Execution System Software for AM |
|
|
518 | (2) |
|
17.11 The Additive Manufacturing File (AMF) Format |
|
|
520 | (2) |
|
|
522 | (3) |
|
|
522 | (3) |
|
18 Direct Digital Manufacturing |
|
|
525 | (30) |
|
|
525 | (1) |
|
|
526 | (5) |
|
|
527 | (1) |
|
18.2.2 Siemens and Phonak |
|
|
528 | (2) |
|
18.2.3 Polymer Aerospace Parts |
|
|
530 | (1) |
|
|
531 | (7) |
|
18.3.1 Aerospace and Power Generation Industries |
|
|
532 | (2) |
|
18.3.2 Automotive Industry |
|
|
534 | (1) |
|
|
535 | (1) |
|
18.3.4 Consumer Industries |
|
|
536 | (2) |
|
|
538 | (2) |
|
18.5 Manufacturing Versus Prototyping |
|
|
540 | (2) |
|
|
542 | (6) |
|
|
542 | (2) |
|
|
544 | (3) |
|
18.6.3 Laser Scanning Vat Photopolymerization Example |
|
|
547 | (1) |
|
|
548 | (2) |
|
18.8 Future of Direct Digital Manufacturing |
|
|
550 | (1) |
|
|
551 | (4) |
|
|
553 | (2) |
|
19 Design for Additive Manufacturing |
|
|
555 | (54) |
|
|
555 | (1) |
|
19.2 Design for Manufacturing and Assembly |
|
|
556 | (3) |
|
19.3 Core DFAM Concepts and Objectives |
|
|
559 | (8) |
|
19.3.1 Opportunistic vs. Restrictive DFAM |
|
|
559 | (1) |
|
19.3.2 AM Unique Capabilities |
|
|
560 | (1) |
|
|
560 | (1) |
|
19.3.4 Hierarchical Complexity |
|
|
561 | (2) |
|
19.3.5 Functional Complexity |
|
|
563 | (2) |
|
19.3.6 Material Complexity |
|
|
565 | (2) |
|
19.4 Design Opportunities |
|
|
567 | (11) |
|
19.4.1 Part Consolidation Overview |
|
|
567 | (2) |
|
19.4.2 Design for Function |
|
|
569 | (2) |
|
19.4.3 Part Consolidation Consequences |
|
|
571 | (1) |
|
19.4.4 Customized Geometry |
|
|
572 | (1) |
|
19.4.5 Hierarchical Structures |
|
|
572 | (2) |
|
19.4.6 Multifunctional Designs |
|
|
574 | (1) |
|
19.4.7 Elimination of Conventional DFM Constraints |
|
|
575 | (1) |
|
19.4.8 Industrial Design Applications |
|
|
576 | (2) |
|
19.4.9 Role of Design Standards |
|
|
578 | (1) |
|
19.5 Design for Four-Dimensional (4D) Printing |
|
|
578 | (5) |
|
19.5.1 Definition of 4D Printing |
|
|
579 | (1) |
|
19.5.2 Shape-Shifting Mechanisms and Stimuli |
|
|
580 | (1) |
|
19.5.3 Shape-Shifting Types and Dimensions |
|
|
581 | (2) |
|
19.6 Computer-Aided Design Tools for AM |
|
|
583 | (8) |
|
19.6.1 Challenges for CAD |
|
|
583 | (1) |
|
19.6.2 Solid Modeling CAD Technologies |
|
|
584 | (2) |
|
19.6.3 Commercial CAD Capabilities |
|
|
586 | (1) |
|
19.6.4 Prototypical DFAM System |
|
|
587 | (4) |
|
19.7 Design Space Exploration |
|
|
591 | (3) |
|
19.7.1 Design of Experiments |
|
|
591 | (2) |
|
19.7.2 Design Exploration Software |
|
|
593 | (1) |
|
|
594 | (10) |
|
19.8.1 Theoretically Optimal Lightweight Structures |
|
|
594 | (1) |
|
19.8.2 Optimization Methods |
|
|
595 | (1) |
|
19.8.3 Topology Optimization |
|
|
596 | (8) |
|
|
604 | (1) |
|
|
604 | (5) |
|
|
605 | (4) |
|
|
609 | (14) |
|
|
609 | (2) |
|
20.2 Direct AM Production of Injection Molding Inserts |
|
|
611 | (5) |
|
|
616 | (1) |
|
|
616 | (2) |
|
|
618 | (2) |
|
20.5.1 Vacuum Forming Tools |
|
|
618 | (1) |
|
20.5.2 Paper Pulp Molding Tools |
|
|
618 | (1) |
|
20.5.3 Formwork for Composite Manufacture |
|
|
619 | (1) |
|
20.5.4 Assembly Tools and Metrology Registration Rigs |
|
|
620 | (1) |
|
|
620 | (3) |
|
|
621 | (2) |
|
21 Industrial Drivers for AM Adoption |
|
|
623 | (26) |
|
|
623 | (1) |
|
21.2 Historical Developments |
|
|
624 | (3) |
|
21.2.1 Value of Physical Models |
|
|
624 | (1) |
|
21.2.2 Functional Testing |
|
|
625 | (1) |
|
|
626 | (1) |
|
21.3 The Use of AM to Support Medical Applications |
|
|
627 | (6) |
|
21.3.1 Surgical and Diagnostic Aids |
|
|
628 | (2) |
|
21.3.2 Prosthetics and Implants |
|
|
630 | (2) |
|
21.3.3 Tissue Engineering and Organ Printing |
|
|
632 | (1) |
|
21.4 Software Tools and Surgical Guides for Medical Applications |
|
|
633 | (1) |
|
21.5 Limitations of AM for Medical Applications |
|
|
634 | (3) |
|
|
635 | (1) |
|
|
636 | (1) |
|
|
636 | (1) |
|
|
637 | (1) |
|
|
637 | (1) |
|
21.6 Further Development of Medical AM Applications |
|
|
637 | (3) |
|
|
638 | (1) |
|
|
638 | (1) |
|
21.6.3 Engineering Training |
|
|
639 | (1) |
|
21.6.4 Location of the Technology |
|
|
639 | (1) |
|
|
639 | (1) |
|
21.7 Aerospace Applications |
|
|
640 | (4) |
|
21.7.1 Characteristics Favoring AM |
|
|
640 | (1) |
|
21.7.2 Production Manufacture |
|
|
641 | (3) |
|
21.8 Automotive Applications |
|
|
644 | (1) |
|
|
645 | (4) |
|
|
646 | (3) |
|
22 Business and Societal Implications of AM |
|
|
649 | (14) |
|
|
649 | (2) |
|
|
651 | (6) |
|
22.2.1 New Types of Products |
|
|
651 | (2) |
|
22.2.2 New Types of Organizations |
|
|
653 | (3) |
|
22.2.3 New Types of Employment |
|
|
656 | (1) |
|
|
657 | (3) |
|
|
660 | (1) |
|
|
661 | (2) |
|
|
661 | (2) |
Index |
|
663 | |