Muutke küpsiste eelistusi

E-raamat: Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes

Series edited by (University of Liverpool, UK), Series edited by (BAE Systems, UK), Series edited by (MIT), Series edited by (Parker Aerospace Group, USA), (Delft University of Technology, The Netherlands)
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 26-Apr-2013
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118568088
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 26-Apr-2013
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118568088
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread.

Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal  features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. 

The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to what if questions rapidly and with little computational cost.

Key features:





Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons  of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers

Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.

Arvustused

Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.  (Expofairs.com, 13 August 2013)

Foreword xv
Series Preface xix
Preface xxi
Acknowledgements xxv
1 Design of the Well-Tempered Aircraft
1(30)
1.1 How Aircraft Design Developed
1(5)
1.1.1 Evolution of Jetliners and Executive Aircraft
1(3)
1.1.2 A Framework for Advanced Design
4(1)
1.1.3 Analytical Design Optimization
4(1)
1.1.4 Computational Design Environment
5(1)
1.2 Concept Finding
6(2)
1.2.1 Advanced Design
6(1)
1.2.2 Pre-conceptual Studies
7(1)
1.3 Product Development
8(5)
1.3.1 Concept Definition
10(1)
1.3.2 Preliminary Design
11(2)
1.3.3 Detail Design
13(1)
1.4 Baseline Design in a Nutshell
13(6)
1.4.1 Baseline Sizing
13(2)
1.4.2 Power Plant
15(1)
1.4.3 Weight and Balance
16(1)
1.4.4 Structure
16(1)
1.4.5 Performance Analysis
17(1)
1.4.6 Closing the Loop
18(1)
1.5 Automated Design Synthesis
19(3)
1.5.1 Computational Systems Requirements
19(1)
1.5.2 Examples
20(1)
1.5.3 Parametric Surveys
21(1)
1.6 Technology Assessment
22(3)
1.7 Structure of the Optimization Problem
25(6)
1.7.1 Analysis Versus Synthesis
25(1)
1.7.2 Problem Classification
26(1)
Bibliography
27(4)
2 Early Conceptual Design
31(28)
2.1 Scenario and Requirements
31(5)
2.1.1 What Drives a Design?
31(2)
2.1.2 Civil Airplane Categories
33(2)
2.1.3 Top Level Requirements
35(1)
2.2 Weight Terminology and Prediction
36(5)
2.2.1 Method Classification
36(1)
2.2.2 Basic Weight Components
37(2)
2.2.3 Weight Limits
39(1)
2.2.4 Transport Capability
39(2)
2.3 The Unity Equation
41(5)
2.3.1 Mission Fuel
43(1)
2.3.2 Empty Weight
44(1)
2.3.3 Design Weights
45(1)
2.4 Range Parameter
46(5)
2.4.1 Aerodynamic Efficiency
47(1)
2.4.2 Specific Fuel Consumption and Overall Efficiency
48(1)
2.4.3 Best Cruise Speed
49(2)
2.5 Environmental Issues
51(8)
2.5.1 Energy and Payload Fuel Efficiency
51(3)
2.5.2 `Greener by Design'
54(2)
Bibliography
56(3)
3 Propulsion and Engine Technology
59(22)
3.1 Propulsion Leading the Way
59(1)
3.2 Basic Concepts of Jet Propulsion
60(7)
3.2.1 Turbojet Thrust
60(1)
3.2.2 Turbofan Thrust
61(1)
3.2.3 Specific Fuel Consumption
62(1)
3.2.4 Overall Efficiency
63(1)
3.2.5 Thermal and Propulsive Efficiency
63(2)
3.2.6 Generalized Performance
65(1)
3.2.7 Mach Number and Altitude Effects
66(1)
3.3 Turboprop Engines
67(3)
3.3.1 Power and Specific Fuel Consumption
67(1)
3.3.2 Generalized Performance
68(1)
3.3.3 High Speed Propellers
69(1)
3.4 Turbofan Engine Layout
70(4)
3.4.1 Bypass Ratio Trends
70(2)
3.4.2 Rise and Fall of the Propfan
72(2)
3.4.3 Rebirth of the Open Rotor?
74(1)
3.5 Power Plant Selection
74(7)
3.5.1 Power Plant Location
75(1)
3.5.2 Alternative Fuels
76(1)
3.5.3 Aircraft Noise
77(1)
Bibliography
78(3)
4 Aerodynamic Drag and Its Reduction
81(40)
4.1 Basic Concepts
81(3)
4.1.1 Lift, Drag and Aerodynamic Efficiency
82(1)
4.1.2 Drag Breakdown and Definitions
83(1)
4.2 Decomposition Schemes and Terminology
84(3)
4.2.1 Pressure and Friction Drag
84(1)
4.2.2 Viscous Drag
85(1)
4.2.3 Vortex Drag
85(1)
4.2.4 Wave Drag
86(1)
4.3 Subsonic Parasite and Induced Drag
87(8)
4.3.1 Parasite Drag
87(3)
4.3.2 Monoplane Induced Drag
90(1)
4.3.3 Biplane Induced Drag
91(3)
4.3.4 Multiplane and Boxplane Induced Drag
94(1)
4.4 Drag Polar Representations
95(4)
4.4.1 Two-term Approximation
95(1)
4.4.2 Three-term Approximation
96(1)
4.4.3 Reynolds Number Effects
97(1)
4.4.4 Compressibility Correction
98(1)
4.5 Drag Prediction
99(7)
4.5.1 Interference Drag
100(1)
4.5.2 Roughness and Excrescences
101(1)
4.5.3 Corrections Dependent on Operation
102(1)
4.5.4 Estimation of Maximum Subsonic L/D
102(2)
4.5.5 Low-Speed Configuration
104(2)
4.6 Viscous Drag Reduction
106(8)
4.6.1 Wetted Area
107(1)
4.6.2 Turbulent Friction Drag
108(1)
4.6.3 Natural Laminar Flow
108(2)
4.6.4 Laminar Flow Control
110(1)
4.6.5 Hybrid Laminar Flow Control
111(1)
4.6.6 Gains, Challenges and Barriers of LFC
112(2)
4.7 Induced Drag Reduction
114(7)
4.7.1 Wing Span
114(1)
4.7.2 Spanwise Camber
115(1)
4.7.3 Non-planar Wing Systems
115(1)
Bibliography
115(6)
5 From Tube and Wing to Flying Wing
121(36)
5.1 The Case for Flying Wings
121(6)
5.1.1 Northrop's All-Wing Aircraft
121(2)
5.1.2 Flying Wing Controversy
123(1)
5.1.3 Whither All-Wing Airliners?
124(2)
5.1.4 Fundamental Issues
126(1)
5.2 Allocation of Useful Volume
127(7)
5.2.1 Integration of the Useful Load
128(1)
5.2.2 Study Ground Rules
128(1)
5.2.3 Volume Ratio
129(1)
5.2.4 Zero-Lift Drag
130(1)
5.2.5 Generalized Aerodynamic Efficiency
131(1)
5.2.6 Partial Optima
132(2)
5.3 Survey of Aerodynamic Efficiency
134(4)
5.3.1 Altitude Variation
134(1)
5.3.2 Aspect Ratio and Span
135(1)
5.3.3 Engine-Airframe Matching
136(2)
5.4 Survey of the Parameter ML/D
138(2)
5.4.1 Optimum Flight Conditions
138(1)
5.4.2 The Drag Parameter
139(1)
5.5 Integrated Configurations Compared
140(9)
5.5.1 Conventional Baseline
141(2)
5.5.2 Is a Wing Alone Sufficient?
143(1)
5.5.3 Blended Wing Body
144(2)
5.5.4 Hybrid Flying Wing
146(1)
5.5.5 Span Loader
147(2)
5.6 Flying Wing Design
149(8)
5.6.1 Hang-Ups or Showstopper?
149(1)
5.6.2 Structural Design and Weight
150(1)
5.6.3 The Flying Wing: Will It Fly?
151(1)
Bibliography
152(5)
6 Clean Sheet Design
157(40)
6.1 Dominant and Radical Configurations
157(2)
6.1.1 Established Configurations
157(2)
6.1.2 New Paradigms
159(1)
6.2 Morphology of Shapes
159(6)
6.2.1 Classification
160(1)
6.2.2 Lifting Systems
160(2)
6.2.3 Plan View Classification
162(1)
6.2.4 Strut-Braced Wings
163(1)
6.2.5 Propulsion and Concept Integration
164(1)
6.3 Wing and Tail Configurations
165(4)
6.3.1 Aerodynamic Limits
165(2)
6.3.2 The Balanced Design
167(1)
6.3.3 Evaluation
168(1)
6.3.4 Relaxed Inherent Stability
169(1)
6.4 Aircraft Featuring a Foreplane
169(4)
6.4.1 Canard Configuration
170(2)
6.4.2 Three-Surface Aircraft
172(1)
6.5 Non-Planar Lifting Systems
173(4)
6.5.1 Transonic Boxplane
173(2)
6.5.2 C-Wing
175(2)
6.6 Joined Wing Aircraft
177(5)
6.6.1 Structural Principles and Weight
178(1)
6.6.2 Aerodynamic Aspects
179(1)
6.6.3 Stability and Control
180(1)
6.6.4 Design Integration
181(1)
6.7 Twin-Fuselage Aircraft
182(4)
6.7.1 Design Integration
185(1)
6.8 Hydrogen-Fuelled Commercial Transports
186(3)
6.8.1 Properties of LH2
187(1)
6.8.2 Fuel System
188(1)
6.8.3 Handling Safety, Economics and Logistics
189(1)
6.9 Promising Concepts
189(8)
Bibliography
190(7)
7 Aircraft Design Optimization
197(32)
7.1 The Perfect Design: An Illusion?
197(1)
7.2 Elements of Optimization
198(8)
7.2.1 Design Parameters
198(1)
7.2.2 Optimal Control and Discrete-Variable Optimization
199(1)
7.2.3 Basic Terminology
200(1)
7.2.4 Single-Objective Optimization
201(1)
7.2.5 Unconstrained Optimizer
202(2)
7.2.6 Constrained Optimizer
204(2)
7.3 Analytical or Numerical Optimization?
206(7)
7.3.1 Analytical Approach
206(1)
7.3.2 Multivariate Optimization
207(2)
7.3.3 Unconstrained Optimization
209(1)
7.3.4 Constrained Optimization
210(1)
7.3.5 Response Surface Approximation
211(1)
7.3.6 Global Models
212(1)
7.4 Large Optimization Problems
213(6)
7.4.1 Concept Sizing and Evaluation
213(1)
7.4.2 Multidisciplinary Optimization
214(1)
7.4.3 System Decomposition
215(2)
7.4.4 Multilevel Optimization
217(1)
7.4.5 Multi-Objective Optimization
218(1)
7.5 Practical Optimization in Conceptual Design
219(10)
7.5.1 Arguments of the Sceptic
219(1)
7.5.2 Problem Structure
220(1)
7.5.3 Selecting Selection Variables
220(2)
7.5.4 Design Sensitivity
222(1)
7.5.5 The Objective Function
222(1)
Bibliography
223(6)
8 Theory of Optimum Weight
229(32)
8.1 Weight Engineering: Core of Aircraft Design
229(3)
8.1.1 Prediction Methods
230(1)
8.1.2 Use of Statistics
231(1)
8.2 Design Sensitivity
232(2)
8.2.1 Problem Structure
232(1)
8.2.2 Selection Variables
233(1)
8.3 Jet Transport Empty Weight
234(5)
8.3.1 Weight Breakdown
234(1)
8.3.2 Wing Structure (Item 10)
235(1)
8.3.3 Fuselage Structure (Item 11)
236(1)
8.3.4 Empennage Structure (Items 12 and 13)
237(1)
8.3.5 Landing Gear Structure (Item 14)
238(1)
8.3.6 Power Plant and Engine Pylons (Items 2 and 15)
238(1)
8.3.7 Systems, Furnishings and Operational Items (Items 3, 4 and 5)
238(1)
8.3.8 Operating Empty Weight: Example
239(1)
8.4 Design Sensitivity of Airframe Drag
239(4)
8.4.1 Drag Decomposition
240(2)
8.4.2 Aerodynamic Efficiency
242(1)
8.5 Thrust, Power Plant and Fuel Weight
243(6)
8.5.1 Installed Thrust and Power Plant Weight
243(2)
8.5.2 Mission Fuel
245(1)
8.5.3 Propulsion Weight Penalty
245(3)
8.5.4 Wing and Propulsion Weight Fraction
248(1)
8.5.5 Optimum Weight Fractions Compared
249(1)
8.6 Take-Off Weight, Thrust and Fuel Efficiency
249(5)
8.6.1 Maximum Take-Off Weight
249(2)
8.6.2 Installed Thrust and Fuel Energy Efficiency
251(1)
8.6.3 Unconstrained Optima Compared
252(1)
8.6.4 Range for Given MTOW
253(1)
8.6.5 Extended Range Version
254(1)
8.7 Summary and Reflection
254(7)
8.7.1 Which Figure of Merit?
254(2)
8.7.2 Conclusion
256(1)
8.7.3 Accuracy
257(1)
Bibliography
257(4)
9 Matching Engines and Airframe
261(20)
9.1 Requirements and Constraints
261(1)
9.2 Cruise-Sized Engines
262(3)
9.2.1 Installed Take-Off Thrust
262(1)
9.2.2 The Thumbprint
263(2)
9.3 Low Speed Requirements
265(2)
9.3.1 Stalling Speed
265(1)
9.3.2 Take-Off Climb
266(1)
9.3.3 Approach and Landing Climb
266(1)
9.3.4 Second Segment Climb Gradient
267(1)
9.4 Schematic Take-Off Analysis
267(6)
9.4.1 Definitions of Take-Off Field Length
268(1)
9.4.2 Take-Off Run
269(1)
9.4.3 Airborne Distance
270(1)
9.4.4 Take-Off Distance
270(1)
9.4.5 Generalized Thrust and Span Loading Constraint
271(2)
9.4.6 Minimum Thrust for Given TOFL
273(1)
9.5 Approach and Landing
273(2)
9.5.1 Landing Distance Analysis
273(1)
9.5.2 Approach Speed and Wing Loading
274(1)
9.6 Engine Selection and Installation
275(6)
9.6.1 Identifying the Best Match
275(1)
9.6.2 Initial Engine Assessment
276(1)
9.6.3 Engine Selection
277(1)
Bibliography
278(3)
10 Elements of Aerodynamic Wing Design
281(38)
10.1 Introduction
281(2)
10.1.1 Problem Structure
282(1)
10.1.2 Relation to Engine Selection
283(1)
10.2 Planform Geometry
283(3)
10.2.1 Wing Area and Design Lift Coefficient
285(1)
10.2.2 Span and Aspect Ratio
286(1)
10.3 Design Sensitivity Information
286(5)
10.3.1 Aerodynamic Efficiency
287(1)
10.3.2 Propulsion Weight Contribution
288(1)
10.3.3 Wing and Tail Structure Weight
289(1)
10.3.4 Wing Penalty Function and MTOW
290(1)
10.4 Subsonic Aircraft Wing
291(4)
10.4.1 Problem Structure
291(1)
10.4.2 Unconstrained Optima
292(2)
10.4.3 Minimum Propulsion Weight Penalty
294(1)
10.4.4 Accuracy
294(1)
10.5 Constrained Optima
295(3)
10.5.1 Take-Off Field Length
296(1)
10.5.2 Tank Volume
296(1)
10.5.3 Wing and Tail Weight Fraction
297(1)
10.5.4 Selection of the Design
297(1)
10.6 Transonic Aircraft Wing
298(6)
10.6.1 Geometry
298(1)
10.6.2 Wing Drag in the Design Condition
299(1)
10.6.3 Modified Wing Penalty Function
300(1)
10.6.4 Thickness Ratio Limit
301(2)
10.6.5 WPF Affected by Sweep Angle and Thickness Ratio
303(1)
10.7 Lift Coefficient and Aspect Ratio
304(5)
10.7.1 Partial Optima
304(2)
10.7.2 Constraints
306(1)
10.7.3 Refining the Optimization
307(2)
10.8 Detailed Design
309(4)
10.8.1 Taper and Lift Distribution
309(1)
10.8.2 Camber and Twist Distribution
310(1)
10.8.3 Forward Swept Wing (FSW)
311(1)
10.8.4 Wing-Tip Devices
312(1)
10.9 High Lift Devices
313(6)
10.9.1 Aerodynamic Effects
313(1)
10.9.2 Design Aspects
314(1)
Bibliography
315(4)
11 The Wing Structure and Its Weight
319(44)
11.1 Introduction
319(2)
11.1.1 Statistics can be Useful
319(1)
11.1.2 Quasi-Analytical Weight Prediction
320(1)
11.2 Methodology
321(5)
11.2.1 Weight Breakdown and Structural Concept
321(2)
11.2.2 Basic Approach
323(1)
11.2.3 Load Factors
324(2)
11.3 Basic Wing Box
326(9)
11.3.1 Bending due to Lift
326(5)
11.3.2 Bending Material
331(2)
11.3.3 Shear Material
333(1)
11.3.4 In-Plane Loads and Torsion
334(1)
11.3.5 Ribs
334(1)
11.4 Inertia Relief and Design Loads
335(3)
11.4.1 Relief due to Fixed Masses
336(1)
11.4.2 Weight-Critical UL and Design Weights
337(1)
11.5 Non-Ideal Weight
338(6)
11.5.1 Non-Taper, Joints and Fasteners
339(1)
11.5.2 Fail Safety and Damage Tolerance
340(1)
11.5.3 Manholes and Access Hatches
340(1)
11.5.4 Reinforcements, Attachments and Support Structure
341(1)
11.5.5 Dynamic Over Swing
342(1)
11.5.6 Torsional Stiffness
342(2)
11.6 Secondary Structures and Miscellaneous Items
344(5)
11.6.1 Fixed Leading Edge
345(1)
11.6.2 Leading Edge High-Lift Devices
345(1)
11.6.3 Fixed Trailing Edge
346(1)
11.6.4 Trailing Edge Flaps
346(2)
11.6.5 Flight Control Devices
348(1)
11.6.6 Tip Structures
348(1)
11.6.7 Miscellaneous Items
349(1)
11.7 Stress Levels in Aluminium Alloys
349(3)
11.7.1 Lower Panels
350(1)
11.7.2 Upper Panels
350(2)
11.7.3 Shear Stress in Spar Webs
352(1)
11.8 Refinements
352(5)
11.8.1 Tip Extensions
352(1)
11.8.2 Centre Section
353(1)
11.8.3 Compound Taper
354(1)
11.8.4 Exposed Wing Lift
355(1)
11.8.5 Advanced Materials
355(2)
11.9 Application
357(6)
11.9.1 Basic Ideal Structure Weight
357(1)
11.9.2 Refined Ideal Structure Weight
358(1)
11.9.3 Wing Structure Weight
359(1)
11.9.4 Accuracy
359(1)
11.9.5 Conclusion
360(1)
Bibliography
361(2)
12 Unified Cruise Performance
363(30)
12.1 Introduction
363(3)
12.1.1 Classical Solutions
363(1)
12.1.2 Unified Cruise Performance
364(1)
12.1.3 Specific Range and the Range Parameter
365(1)
12.2 Maximum Aerodynamic Efficiency
366(5)
12.2.1 Logarithmic Drag Derivatives
368(1)
12.2.2 Interpretation of Log-Derivatives
369(1)
12.2.3 Altitude Constraint
370(1)
12.3 The Parameter ML/D
371(3)
12.3.1 Subsonic Flight Mach Number
371(1)
12.3.2 Transonic Flight Mach Number
372(2)
12.4 The Range Parameter
374(5)
12.4.1 Unconstrained Optima
374(2)
12.4.2 Constrained Optima
376(1)
12.4.3 Interpretation of ηm
376(2)
12.4.4 Optimum Cruise Condition
378(1)
12.5 Range in Cruising Flight
379(3)
12.5.1 Breguet Range Equation
379(1)
12.5.2 Continuous Cruise/Climb
380(1)
12.5.3 Horizontal Cruise, Constant Speed
381(1)
12.5.4 Horizontal Cruise, Constant Lift Coefficient
381(1)
12.6 Cruise Procedures and Mission Fuel
382(6)
12.6.1 Subsonic Flight
382(1)
12.6.2 Transonic Flight
383(1)
12.6.3 Cruise Fuel
384(1)
12.6.4 Mission Fuel
385(2)
12.6.5 Reserve Fuel
387(1)
12.7 Reflection
388(5)
12.7.1 Summary of Results
388(1)
12.7.2 The Design Connection
389(1)
Bibliography
390(3)
A Volumes, Surface and Wetted Areas
393(4)
A.1 Wing
393(1)
A.2 Fuselage
394(1)
A.3 Tail Surfaces
395(1)
A.4 Engine Nacelles and Pylons
395(1)
A.5 Airframe Wetted Area
395(2)
Bibliography
396(1)
B International Standard Atmosphere
397(2)
C Abbreviations
399(4)
Index 403
Egbert Torenbeek, Delft University of Technology, The Netherlands Egbert Torenbeek is Professor Emeritus of Aircraft Design at Delft University of Technology. He graduated as an engineer in 1961 at TU Delft and in 1964 he became responsible for teaching the Aircraft Preliminary Design course at the department of Aerospace Engineering. After a sabbatical at Lockheed Georgia Company, he became a senior lecturer and full professor of the Aircraft Design chair at TU Delft, initiating research and teaching in computer-assisted aircraft design.