Foreword |
|
xv | |
Series Preface |
|
xix | |
Preface |
|
xxi | |
Acknowledgements |
|
xxv | |
|
1 Design of the Well-Tempered Aircraft |
|
|
1 | (30) |
|
1.1 How Aircraft Design Developed |
|
|
1 | (5) |
|
1.1.1 Evolution of Jetliners and Executive Aircraft |
|
|
1 | (3) |
|
1.1.2 A Framework for Advanced Design |
|
|
4 | (1) |
|
1.1.3 Analytical Design Optimization |
|
|
4 | (1) |
|
1.1.4 Computational Design Environment |
|
|
5 | (1) |
|
|
6 | (2) |
|
|
6 | (1) |
|
1.2.2 Pre-conceptual Studies |
|
|
7 | (1) |
|
|
8 | (5) |
|
|
10 | (1) |
|
|
11 | (2) |
|
|
13 | (1) |
|
1.4 Baseline Design in a Nutshell |
|
|
13 | (6) |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.4.5 Performance Analysis |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.5 Automated Design Synthesis |
|
|
19 | (3) |
|
1.5.1 Computational Systems Requirements |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
1.6 Technology Assessment |
|
|
22 | (3) |
|
1.7 Structure of the Optimization Problem |
|
|
25 | (6) |
|
1.7.1 Analysis Versus Synthesis |
|
|
25 | (1) |
|
1.7.2 Problem Classification |
|
|
26 | (1) |
|
|
27 | (4) |
|
2 Early Conceptual Design |
|
|
31 | (28) |
|
2.1 Scenario and Requirements |
|
|
31 | (5) |
|
2.1.1 What Drives a Design? |
|
|
31 | (2) |
|
2.1.2 Civil Airplane Categories |
|
|
33 | (2) |
|
2.1.3 Top Level Requirements |
|
|
35 | (1) |
|
2.2 Weight Terminology and Prediction |
|
|
36 | (5) |
|
2.2.1 Method Classification |
|
|
36 | (1) |
|
2.2.2 Basic Weight Components |
|
|
37 | (2) |
|
|
39 | (1) |
|
2.2.4 Transport Capability |
|
|
39 | (2) |
|
|
41 | (5) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (5) |
|
2.4.1 Aerodynamic Efficiency |
|
|
47 | (1) |
|
2.4.2 Specific Fuel Consumption and Overall Efficiency |
|
|
48 | (1) |
|
|
49 | (2) |
|
|
51 | (8) |
|
2.5.1 Energy and Payload Fuel Efficiency |
|
|
51 | (3) |
|
2.5.2 `Greener by Design' |
|
|
54 | (2) |
|
|
56 | (3) |
|
3 Propulsion and Engine Technology |
|
|
59 | (22) |
|
3.1 Propulsion Leading the Way |
|
|
59 | (1) |
|
3.2 Basic Concepts of Jet Propulsion |
|
|
60 | (7) |
|
|
60 | (1) |
|
|
61 | (1) |
|
3.2.3 Specific Fuel Consumption |
|
|
62 | (1) |
|
|
63 | (1) |
|
3.2.5 Thermal and Propulsive Efficiency |
|
|
63 | (2) |
|
3.2.6 Generalized Performance |
|
|
65 | (1) |
|
3.2.7 Mach Number and Altitude Effects |
|
|
66 | (1) |
|
|
67 | (3) |
|
3.3.1 Power and Specific Fuel Consumption |
|
|
67 | (1) |
|
3.3.2 Generalized Performance |
|
|
68 | (1) |
|
3.3.3 High Speed Propellers |
|
|
69 | (1) |
|
3.4 Turbofan Engine Layout |
|
|
70 | (4) |
|
3.4.1 Bypass Ratio Trends |
|
|
70 | (2) |
|
3.4.2 Rise and Fall of the Propfan |
|
|
72 | (2) |
|
3.4.3 Rebirth of the Open Rotor? |
|
|
74 | (1) |
|
3.5 Power Plant Selection |
|
|
74 | (7) |
|
3.5.1 Power Plant Location |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (3) |
|
4 Aerodynamic Drag and Its Reduction |
|
|
81 | (40) |
|
|
81 | (3) |
|
4.1.1 Lift, Drag and Aerodynamic Efficiency |
|
|
82 | (1) |
|
4.1.2 Drag Breakdown and Definitions |
|
|
83 | (1) |
|
4.2 Decomposition Schemes and Terminology |
|
|
84 | (3) |
|
4.2.1 Pressure and Friction Drag |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
4.3 Subsonic Parasite and Induced Drag |
|
|
87 | (8) |
|
|
87 | (3) |
|
4.3.2 Monoplane Induced Drag |
|
|
90 | (1) |
|
4.3.3 Biplane Induced Drag |
|
|
91 | (3) |
|
4.3.4 Multiplane and Boxplane Induced Drag |
|
|
94 | (1) |
|
4.4 Drag Polar Representations |
|
|
95 | (4) |
|
4.4.1 Two-term Approximation |
|
|
95 | (1) |
|
4.4.2 Three-term Approximation |
|
|
96 | (1) |
|
4.4.3 Reynolds Number Effects |
|
|
97 | (1) |
|
4.4.4 Compressibility Correction |
|
|
98 | (1) |
|
|
99 | (7) |
|
|
100 | (1) |
|
4.5.2 Roughness and Excrescences |
|
|
101 | (1) |
|
4.5.3 Corrections Dependent on Operation |
|
|
102 | (1) |
|
4.5.4 Estimation of Maximum Subsonic L/D |
|
|
102 | (2) |
|
4.5.5 Low-Speed Configuration |
|
|
104 | (2) |
|
4.6 Viscous Drag Reduction |
|
|
106 | (8) |
|
|
107 | (1) |
|
4.6.2 Turbulent Friction Drag |
|
|
108 | (1) |
|
4.6.3 Natural Laminar Flow |
|
|
108 | (2) |
|
4.6.4 Laminar Flow Control |
|
|
110 | (1) |
|
4.6.5 Hybrid Laminar Flow Control |
|
|
111 | (1) |
|
4.6.6 Gains, Challenges and Barriers of LFC |
|
|
112 | (2) |
|
4.7 Induced Drag Reduction |
|
|
114 | (7) |
|
|
114 | (1) |
|
|
115 | (1) |
|
4.7.3 Non-planar Wing Systems |
|
|
115 | (1) |
|
|
115 | (6) |
|
5 From Tube and Wing to Flying Wing |
|
|
121 | (36) |
|
5.1 The Case for Flying Wings |
|
|
121 | (6) |
|
5.1.1 Northrop's All-Wing Aircraft |
|
|
121 | (2) |
|
5.1.2 Flying Wing Controversy |
|
|
123 | (1) |
|
5.1.3 Whither All-Wing Airliners? |
|
|
124 | (2) |
|
|
126 | (1) |
|
5.2 Allocation of Useful Volume |
|
|
127 | (7) |
|
5.2.1 Integration of the Useful Load |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
130 | (1) |
|
5.2.5 Generalized Aerodynamic Efficiency |
|
|
131 | (1) |
|
|
132 | (2) |
|
5.3 Survey of Aerodynamic Efficiency |
|
|
134 | (4) |
|
|
134 | (1) |
|
5.3.2 Aspect Ratio and Span |
|
|
135 | (1) |
|
5.3.3 Engine-Airframe Matching |
|
|
136 | (2) |
|
5.4 Survey of the Parameter ML/D |
|
|
138 | (2) |
|
5.4.1 Optimum Flight Conditions |
|
|
138 | (1) |
|
|
139 | (1) |
|
5.5 Integrated Configurations Compared |
|
|
140 | (9) |
|
5.5.1 Conventional Baseline |
|
|
141 | (2) |
|
5.5.2 Is a Wing Alone Sufficient? |
|
|
143 | (1) |
|
|
144 | (2) |
|
|
146 | (1) |
|
|
147 | (2) |
|
|
149 | (8) |
|
5.6.1 Hang-Ups or Showstopper? |
|
|
149 | (1) |
|
5.6.2 Structural Design and Weight |
|
|
150 | (1) |
|
5.6.3 The Flying Wing: Will It Fly? |
|
|
151 | (1) |
|
|
152 | (5) |
|
|
157 | (40) |
|
6.1 Dominant and Radical Configurations |
|
|
157 | (2) |
|
6.1.1 Established Configurations |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
159 | (6) |
|
|
160 | (1) |
|
|
160 | (2) |
|
6.2.3 Plan View Classification |
|
|
162 | (1) |
|
|
163 | (1) |
|
6.2.5 Propulsion and Concept Integration |
|
|
164 | (1) |
|
6.3 Wing and Tail Configurations |
|
|
165 | (4) |
|
|
165 | (2) |
|
6.3.2 The Balanced Design |
|
|
167 | (1) |
|
|
168 | (1) |
|
6.3.4 Relaxed Inherent Stability |
|
|
169 | (1) |
|
6.4 Aircraft Featuring a Foreplane |
|
|
169 | (4) |
|
6.4.1 Canard Configuration |
|
|
170 | (2) |
|
6.4.2 Three-Surface Aircraft |
|
|
172 | (1) |
|
6.5 Non-Planar Lifting Systems |
|
|
173 | (4) |
|
|
173 | (2) |
|
|
175 | (2) |
|
|
177 | (5) |
|
6.6.1 Structural Principles and Weight |
|
|
178 | (1) |
|
6.6.2 Aerodynamic Aspects |
|
|
179 | (1) |
|
6.6.3 Stability and Control |
|
|
180 | (1) |
|
|
181 | (1) |
|
6.7 Twin-Fuselage Aircraft |
|
|
182 | (4) |
|
|
185 | (1) |
|
6.8 Hydrogen-Fuelled Commercial Transports |
|
|
186 | (3) |
|
|
187 | (1) |
|
|
188 | (1) |
|
6.8.3 Handling Safety, Economics and Logistics |
|
|
189 | (1) |
|
|
189 | (8) |
|
|
190 | (7) |
|
7 Aircraft Design Optimization |
|
|
197 | (32) |
|
7.1 The Perfect Design: An Illusion? |
|
|
197 | (1) |
|
7.2 Elements of Optimization |
|
|
198 | (8) |
|
|
198 | (1) |
|
7.2.2 Optimal Control and Discrete-Variable Optimization |
|
|
199 | (1) |
|
|
200 | (1) |
|
7.2.4 Single-Objective Optimization |
|
|
201 | (1) |
|
7.2.5 Unconstrained Optimizer |
|
|
202 | (2) |
|
7.2.6 Constrained Optimizer |
|
|
204 | (2) |
|
7.3 Analytical or Numerical Optimization? |
|
|
206 | (7) |
|
7.3.1 Analytical Approach |
|
|
206 | (1) |
|
7.3.2 Multivariate Optimization |
|
|
207 | (2) |
|
7.3.3 Unconstrained Optimization |
|
|
209 | (1) |
|
7.3.4 Constrained Optimization |
|
|
210 | (1) |
|
7.3.5 Response Surface Approximation |
|
|
211 | (1) |
|
|
212 | (1) |
|
7.4 Large Optimization Problems |
|
|
213 | (6) |
|
7.4.1 Concept Sizing and Evaluation |
|
|
213 | (1) |
|
7.4.2 Multidisciplinary Optimization |
|
|
214 | (1) |
|
7.4.3 System Decomposition |
|
|
215 | (2) |
|
7.4.4 Multilevel Optimization |
|
|
217 | (1) |
|
7.4.5 Multi-Objective Optimization |
|
|
218 | (1) |
|
7.5 Practical Optimization in Conceptual Design |
|
|
219 | (10) |
|
7.5.1 Arguments of the Sceptic |
|
|
219 | (1) |
|
|
220 | (1) |
|
7.5.3 Selecting Selection Variables |
|
|
220 | (2) |
|
|
222 | (1) |
|
7.5.5 The Objective Function |
|
|
222 | (1) |
|
|
223 | (6) |
|
8 Theory of Optimum Weight |
|
|
229 | (32) |
|
8.1 Weight Engineering: Core of Aircraft Design |
|
|
229 | (3) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (2) |
|
|
232 | (1) |
|
8.2.2 Selection Variables |
|
|
233 | (1) |
|
8.3 Jet Transport Empty Weight |
|
|
234 | (5) |
|
|
234 | (1) |
|
8.3.2 Wing Structure (Item 10) |
|
|
235 | (1) |
|
8.3.3 Fuselage Structure (Item 11) |
|
|
236 | (1) |
|
8.3.4 Empennage Structure (Items 12 and 13) |
|
|
237 | (1) |
|
8.3.5 Landing Gear Structure (Item 14) |
|
|
238 | (1) |
|
8.3.6 Power Plant and Engine Pylons (Items 2 and 15) |
|
|
238 | (1) |
|
8.3.7 Systems, Furnishings and Operational Items (Items 3, 4 and 5) |
|
|
238 | (1) |
|
8.3.8 Operating Empty Weight: Example |
|
|
239 | (1) |
|
8.4 Design Sensitivity of Airframe Drag |
|
|
239 | (4) |
|
|
240 | (2) |
|
8.4.2 Aerodynamic Efficiency |
|
|
242 | (1) |
|
8.5 Thrust, Power Plant and Fuel Weight |
|
|
243 | (6) |
|
8.5.1 Installed Thrust and Power Plant Weight |
|
|
243 | (2) |
|
|
245 | (1) |
|
8.5.3 Propulsion Weight Penalty |
|
|
245 | (3) |
|
8.5.4 Wing and Propulsion Weight Fraction |
|
|
248 | (1) |
|
8.5.5 Optimum Weight Fractions Compared |
|
|
249 | (1) |
|
8.6 Take-Off Weight, Thrust and Fuel Efficiency |
|
|
249 | (5) |
|
8.6.1 Maximum Take-Off Weight |
|
|
249 | (2) |
|
8.6.2 Installed Thrust and Fuel Energy Efficiency |
|
|
251 | (1) |
|
8.6.3 Unconstrained Optima Compared |
|
|
252 | (1) |
|
8.6.4 Range for Given MTOW |
|
|
253 | (1) |
|
8.6.5 Extended Range Version |
|
|
254 | (1) |
|
8.7 Summary and Reflection |
|
|
254 | (7) |
|
8.7.1 Which Figure of Merit? |
|
|
254 | (2) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
257 | (4) |
|
9 Matching Engines and Airframe |
|
|
261 | (20) |
|
9.1 Requirements and Constraints |
|
|
261 | (1) |
|
|
262 | (3) |
|
9.2.1 Installed Take-Off Thrust |
|
|
262 | (1) |
|
|
263 | (2) |
|
9.3 Low Speed Requirements |
|
|
265 | (2) |
|
|
265 | (1) |
|
|
266 | (1) |
|
9.3.3 Approach and Landing Climb |
|
|
266 | (1) |
|
9.3.4 Second Segment Climb Gradient |
|
|
267 | (1) |
|
9.4 Schematic Take-Off Analysis |
|
|
267 | (6) |
|
9.4.1 Definitions of Take-Off Field Length |
|
|
268 | (1) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (1) |
|
9.4.5 Generalized Thrust and Span Loading Constraint |
|
|
271 | (2) |
|
9.4.6 Minimum Thrust for Given TOFL |
|
|
273 | (1) |
|
|
273 | (2) |
|
9.5.1 Landing Distance Analysis |
|
|
273 | (1) |
|
9.5.2 Approach Speed and Wing Loading |
|
|
274 | (1) |
|
9.6 Engine Selection and Installation |
|
|
275 | (6) |
|
9.6.1 Identifying the Best Match |
|
|
275 | (1) |
|
9.6.2 Initial Engine Assessment |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
278 | (3) |
|
10 Elements of Aerodynamic Wing Design |
|
|
281 | (38) |
|
|
281 | (2) |
|
|
282 | (1) |
|
10.1.2 Relation to Engine Selection |
|
|
283 | (1) |
|
|
283 | (3) |
|
10.2.1 Wing Area and Design Lift Coefficient |
|
|
285 | (1) |
|
10.2.2 Span and Aspect Ratio |
|
|
286 | (1) |
|
10.3 Design Sensitivity Information |
|
|
286 | (5) |
|
10.3.1 Aerodynamic Efficiency |
|
|
287 | (1) |
|
10.3.2 Propulsion Weight Contribution |
|
|
288 | (1) |
|
10.3.3 Wing and Tail Structure Weight |
|
|
289 | (1) |
|
10.3.4 Wing Penalty Function and MTOW |
|
|
290 | (1) |
|
10.4 Subsonic Aircraft Wing |
|
|
291 | (4) |
|
|
291 | (1) |
|
10.4.2 Unconstrained Optima |
|
|
292 | (2) |
|
10.4.3 Minimum Propulsion Weight Penalty |
|
|
294 | (1) |
|
|
294 | (1) |
|
|
295 | (3) |
|
10.5.1 Take-Off Field Length |
|
|
296 | (1) |
|
|
296 | (1) |
|
10.5.3 Wing and Tail Weight Fraction |
|
|
297 | (1) |
|
10.5.4 Selection of the Design |
|
|
297 | (1) |
|
10.6 Transonic Aircraft Wing |
|
|
298 | (6) |
|
|
298 | (1) |
|
10.6.2 Wing Drag in the Design Condition |
|
|
299 | (1) |
|
10.6.3 Modified Wing Penalty Function |
|
|
300 | (1) |
|
10.6.4 Thickness Ratio Limit |
|
|
301 | (2) |
|
10.6.5 WPF Affected by Sweep Angle and Thickness Ratio |
|
|
303 | (1) |
|
10.7 Lift Coefficient and Aspect Ratio |
|
|
304 | (5) |
|
|
304 | (2) |
|
|
306 | (1) |
|
10.7.3 Refining the Optimization |
|
|
307 | (2) |
|
|
309 | (4) |
|
10.8.1 Taper and Lift Distribution |
|
|
309 | (1) |
|
10.8.2 Camber and Twist Distribution |
|
|
310 | (1) |
|
10.8.3 Forward Swept Wing (FSW) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
313 | (6) |
|
10.9.1 Aerodynamic Effects |
|
|
313 | (1) |
|
|
314 | (1) |
|
|
315 | (4) |
|
11 The Wing Structure and Its Weight |
|
|
319 | (44) |
|
|
319 | (2) |
|
11.1.1 Statistics can be Useful |
|
|
319 | (1) |
|
11.1.2 Quasi-Analytical Weight Prediction |
|
|
320 | (1) |
|
|
321 | (5) |
|
11.2.1 Weight Breakdown and Structural Concept |
|
|
321 | (2) |
|
|
323 | (1) |
|
|
324 | (2) |
|
|
326 | (9) |
|
11.3.1 Bending due to Lift |
|
|
326 | (5) |
|
|
331 | (2) |
|
|
333 | (1) |
|
11.3.4 In-Plane Loads and Torsion |
|
|
334 | (1) |
|
|
334 | (1) |
|
11.4 Inertia Relief and Design Loads |
|
|
335 | (3) |
|
11.4.1 Relief due to Fixed Masses |
|
|
336 | (1) |
|
11.4.2 Weight-Critical UL and Design Weights |
|
|
337 | (1) |
|
|
338 | (6) |
|
11.5.1 Non-Taper, Joints and Fasteners |
|
|
339 | (1) |
|
11.5.2 Fail Safety and Damage Tolerance |
|
|
340 | (1) |
|
11.5.3 Manholes and Access Hatches |
|
|
340 | (1) |
|
11.5.4 Reinforcements, Attachments and Support Structure |
|
|
341 | (1) |
|
11.5.5 Dynamic Over Swing |
|
|
342 | (1) |
|
11.5.6 Torsional Stiffness |
|
|
342 | (2) |
|
11.6 Secondary Structures and Miscellaneous Items |
|
|
344 | (5) |
|
11.6.1 Fixed Leading Edge |
|
|
345 | (1) |
|
11.6.2 Leading Edge High-Lift Devices |
|
|
345 | (1) |
|
11.6.3 Fixed Trailing Edge |
|
|
346 | (1) |
|
11.6.4 Trailing Edge Flaps |
|
|
346 | (2) |
|
11.6.5 Flight Control Devices |
|
|
348 | (1) |
|
|
348 | (1) |
|
11.6.7 Miscellaneous Items |
|
|
349 | (1) |
|
11.7 Stress Levels in Aluminium Alloys |
|
|
349 | (3) |
|
|
350 | (1) |
|
|
350 | (2) |
|
11.7.3 Shear Stress in Spar Webs |
|
|
352 | (1) |
|
|
352 | (5) |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
355 | (1) |
|
11.8.5 Advanced Materials |
|
|
355 | (2) |
|
|
357 | (6) |
|
11.9.1 Basic Ideal Structure Weight |
|
|
357 | (1) |
|
11.9.2 Refined Ideal Structure Weight |
|
|
358 | (1) |
|
11.9.3 Wing Structure Weight |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
360 | (1) |
|
|
361 | (2) |
|
12 Unified Cruise Performance |
|
|
363 | (30) |
|
|
363 | (3) |
|
12.1.1 Classical Solutions |
|
|
363 | (1) |
|
12.1.2 Unified Cruise Performance |
|
|
364 | (1) |
|
12.1.3 Specific Range and the Range Parameter |
|
|
365 | (1) |
|
12.2 Maximum Aerodynamic Efficiency |
|
|
366 | (5) |
|
12.2.1 Logarithmic Drag Derivatives |
|
|
368 | (1) |
|
12.2.2 Interpretation of Log-Derivatives |
|
|
369 | (1) |
|
12.2.3 Altitude Constraint |
|
|
370 | (1) |
|
|
371 | (3) |
|
12.3.1 Subsonic Flight Mach Number |
|
|
371 | (1) |
|
12.3.2 Transonic Flight Mach Number |
|
|
372 | (2) |
|
|
374 | (5) |
|
12.4.1 Unconstrained Optima |
|
|
374 | (2) |
|
12.4.2 Constrained Optima |
|
|
376 | (1) |
|
12.4.3 Interpretation of ηm |
|
|
376 | (2) |
|
12.4.4 Optimum Cruise Condition |
|
|
378 | (1) |
|
12.5 Range in Cruising Flight |
|
|
379 | (3) |
|
12.5.1 Breguet Range Equation |
|
|
379 | (1) |
|
12.5.2 Continuous Cruise/Climb |
|
|
380 | (1) |
|
12.5.3 Horizontal Cruise, Constant Speed |
|
|
381 | (1) |
|
12.5.4 Horizontal Cruise, Constant Lift Coefficient |
|
|
381 | (1) |
|
12.6 Cruise Procedures and Mission Fuel |
|
|
382 | (6) |
|
|
382 | (1) |
|
|
383 | (1) |
|
|
384 | (1) |
|
|
385 | (2) |
|
|
387 | (1) |
|
|
388 | (5) |
|
12.7.1 Summary of Results |
|
|
388 | (1) |
|
12.7.2 The Design Connection |
|
|
389 | (1) |
|
|
390 | (3) |
|
A Volumes, Surface and Wetted Areas |
|
|
393 | (4) |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
395 | (1) |
|
A.4 Engine Nacelles and Pylons |
|
|
395 | (1) |
|
|
395 | (2) |
|
|
396 | (1) |
|
B International Standard Atmosphere |
|
|
397 | (2) |
|
|
399 | (4) |
Index |
|
403 | |