Muutke küpsiste eelistusi

E-raamat: Advanced Data Mining and Applications: 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part IV

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 19th International Conference on Advanced Data Mining and Applications, ADMA 2023, held in Shenyang, China, during August 21–23, 2023.

The 216 full papers included in this book were carefully reviewed and selected from 503 submissions. They were organized in topical sections as follows: Data mining foundations, Grand challenges of data mining, Parallel and distributed data mining algorithms, Mining on data streams, Graph mining and Spatial data mining.
Deep Learning.- TeaE: an Efficient Method for Improving the Precision of
Teaching Evaluation.- Graph Fusion Multimodal Named Entity Recognition Based
on Auxiliary Relation Enhancement.- Sentence-level Event Detection without
Triggers via Prompt Learning and Machine Reading
Comprehension.- Multi-grained Logical Graph Network for Reasoning-based
Machine Reading Comprehension.- Adaptive Prototype Learning with Common and
Discriminative Features for Few-shot Relation Extraction.- Fine-grained
Knowledge Enhancement for Empathetic Dialogue Generation.- Implicit Sentiment
Extraction using Structure Generation with Sentiment Instructor Prompt
Template.- SE-Prompt: Exploring Semantic Enhancement with Prompt Tuning for
Relation Extraction.- Self-supervised Multi-view Clustering Framework with
Graph Filtering and Contrast Fusion.- Semantic Selection and Multi-view
Alignment for Image-Text Retrieval.- Voice Conversion with Denoising
Diffusion Probabilistic GAN Models.- Symbolic & Acoustic: Multi-domain Music
Emotion Modeling for Instrumental Music.- Document-level Relation Extraction
with Relational Reasoning and Heterogeneous Graph Neural Networks.- A Chinese
Named Entity Recognition Method based on Textual Information Perception
Fusion.- Aspect-Based Sentiment Analysis via BERT and Multi-Scale CBAM.- A
novel adaptive distribution distance-based feature selection method for video
traffic identification.- SVIM: a Skeleton-based View-invariant Method for
Online Gesture Recognition.- A Unified Information Diffusion Prediction Model
based on Multi-task Learning.- Learning Knowledge Representation with Entity
Concept Information.- Domain Adaptive Pre-trained Model for Mushroom Image
Classification.- Training Noise Robust Deep Neural Networks with
Self-supervised Learning.- Path integration enhanced graph attention
network.- Graph Contrastive Learning with HybridNoise Augmentation for
Recommendation.- User-Oriented Interest Representation on Knowledge Graph for
Long-Tail Recommendation.- Multi-Self-Supervised Light Graph Convolution
Network for Social Recommendation.- A Poisoning Attack Based on Variant
Generative Adversarial Networks in Recommender Systems.- Label Correlation
guided Feature Selection for Multi-label Learning.- Iterative
Encode-and-Decode Graph Neural Network.- Community Detection in Temporal
Biological Metabolic Networks based on Semi-NMF Method with Node Similarity
Fusion.- UKGAT: Uncertain Knowledge Graph Embedding Enriched KGAT for
Recommendation.- Knowledge Graph Link Prediction Model Based on Attention
Graph Convolutional Network.- Knowledge Graph Embedding with Relation
Rotation and Entity Adjustment by Quaternions.- Towards time-variant-aware
Link Prediction in Dynamic Graph through Self-supervised Learning.- Adaptive
Heterogeneous graph Contrastive clustering with
Multi-Similarity.- Multi-Teacher Local Semantic Distillation from Graph
Neural Networks.- AutoAM: An End-To-End Neural Model for Automatic and
Universal Argument Mining.- Rethinking the Evaluation of Deep Neural Network
Robustness.- A Visual Interpretation-Based Self-Improved Classification
System Using Virtual Adversarial Training.- TSCMR:Two-Stage Cross-Modal
Retrieval.- Effi-Emp: An AI based approach towards positive empathic
expressions.- Industry Track Papers.- Research on Image Segmentation
Algorithm Based on Level Set. Ping Wu ((AVIC Shenyang Aircraft Design &
Research Institute).- Predicting learners performance using MOOC
clickstream.- A Fine-grained Verification Method for Blockchain Data Based on
Merkle Path Sharding.- A Privacy Preserving Method for Trajectory Data
Publishing Based on Geo-indistinguishability.- HA-CMNet: A Driver CTR Model
for Vehicle-Cargo Matching in O2O Platform.- A Hybrid Intelligent Model
SFAHP-ANFIS-PSO for Technical Capability Evaluation of Manufacturing
Enterprises.- A method for data exchange and management in the military
industry field. Ping Wu ((AVIC Shenyang Aircraft Design & Research
Institute).- Multi-region Quality Assessment based on Spatial-Temporal
Community Detection from Computed Tomography Images.