Muutke küpsiste eelistusi

E-raamat: Advanced Data Mining and Applications: 19th International Conference, ADMA 2023, Shenyang, China, August 21-23, 2023, Proceedings, Part V

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 98,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 19th International Conference on Advanced Data Mining and Applications, ADMA 2023, held in Shenyang, China, during August 21–23, 2023.

The 216 full papers included in this book were carefully reviewed and selected from 503 submissions. They were organized in topical sections as follows: Data mining foundations, Grand challenges of data mining, Parallel and distributed data mining algorithms, Mining on data streams, Graph mining and Spatial data mining.
Data Mining.- Heterogeneous line graph neural network for link
prediction.- Improving Open-Domain Answer Sentence Selection by Distributed
Clients with Privacy Preservation.- An Early Stage Identification of
Cryptomining Behavior with DNS Requests.- NFAQP: Normalizing Flow based
Approximate Query Processing.- Efficient Blockchain Data Trusty Provenance
Based on the W3C PROV Model.- Cardinality Estimation of Subgraph Search
Queries with Direction Learner.- Approximate Continuous k Representative
Skyline Queries over Memory Limitation-based Streaming Data.- AAP: Defending
Against Website Fingerprinting through Burst Obfuscation.- ReviewLocator:
Enhance User Review-based Bug Localization with Bug Reports.- Improving
Adversarial Robustness Via Channel And Depth Compatibility.- Boosting
Adversarial Attacks with Improved Sign Method.- BRQG : A BART-based
Retouching Framework for Multi-hop Question Generation.- MTSTI: A Multi-task
Learning Framework for Spatiotemporal Imputation.- TIGAN: Trajectory
Imputation via Generative Adversarial Network.- Continuous Group Nearest
Neighbor Query over Sliding Window.- Exploration of Stochastic Selection of
Splitting Attributes as a Source of Inducing Diversity.- Machine Unlearning
Methodology base on Stochastic Teacher Network.- CNMBI: Determining the
Number of Clusters Using Center Pairwise Matching and Boundary
Filtering.- TS-MVP:Time-Series Representation Learning by Multi-View
Prototypical Contrastive Learning.- Feature Selection Method for High
Dimensional Data Based on Improved BOA in AIoT.- DACI: An index structure
supporting attributed community queries.- Persistent Community Search over
Temporal Bipartite Graphs.- Applications (Including Industry Track
Papers).- D-Score: A White-Box Diagnosis Score for CNNs Based on Mutation
Operators.- CTKM: Crypto-based user clustering on web
Transactiondata.- Calibrating Popularity Bias Based on Quality for Fairness
Recommendation.- Searching User Community and Attribute Location Cluster in
Location-Based Social Networks.- Efficient Size-Constrained (k, d)-Truss
Community Search.- FSKD: Detecting Fake News with Few-Shot Knowledge
Distillation.- STIP: A Seasonal Trend Integrated Predictor for Blood Glucose
Level in Time Series.- Window-Controlled Sepsis Prediction Using a Model
Selection Approach.- An Effective Pre-trained Visual Encoder for Medical
Visual Question Answering.- BBAC: Blockchain-based access control scheme for
EHRs with data sharing support.- Cross-genre Retrieval for Information
Integrity: A COVID-19 Case Study.- PBCI-DS: A Benchmark Peripheral Blood Cell
Image Dataset for Object Detection.- Skilled Task Assignment with Extra
Budget in Spatial Crowdsourcing.- Synchronous Prediction of Asset Prices'
Multivariate Time Series based on Multi-task Learning and Data
Augmentation.- MGCP:A Multi-View Diffusing Graphs based Traffic Congestion
Prediction for Roads around Factory.- M2MTR: Reposition Idle Taxis in The
Many-to-Many Manner with Multi-Agent Reinforcement
Learning.- Difficulty-Controlled Question Generation in Adaptive Education
for Few-shot Learning.- A Multi-Truth Discovery Approach Based on Confidence
Interval Estimation of Truths.- Development and Application of Flight
Parameter Data Analysis Based on Multi-text Timescale Alignment.- LFD-CD:
Peripheral Blood Cells Detection Using a Lightweight Cell Detection Model
with Full-connection and Dropconnect.- An Effective Pre-trained Visual
Encoder for Medical Visual Question Answering.- A Spatio-Temporal
Attention-based GCN for Anti-Money Laundering Transaction Detection.