Muutke küpsiste eelistusi

E-raamat: Advanced Optical Flow Cytometry: Methods and Disease Diagnoses

Edited by (Chair of Optics and Biomedical Physics)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 31-Mar-2011
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527634293
  • Formaat - EPUB+DRM
  • Hind: 166,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 31-Mar-2011
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527634293

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A detailed look at the latest research in non-invasive in vivo cytometry and its applications, with particular emphasis on novel biophotonic methods, disease diagnosis, and monitoring of disease treatment at single cell level in stationary and flow conditions.
This book thus covers the spectrum ranging from fundamental interactions between light, cells, vascular tissue, and cell labeling particles, to strategies and opportunities for preclinical and clinical research. General topics include light scattering by cells, fast video microscopy, polarization, laser-scanning, fluorescence, Raman, multi-photon, photothermal, and photoacoustic methods for cellular diagnostics and monitoring of disease treatment in living organisms. Also presented are discussions of advanced methods and techniques of classical flow cytometry.
Preface xxi
List of Contributors
xxxi
1 Perspectives in Cytometry
1(24)
Anja Mittag
Attila Tarnok
1.1 Background
1(1)
1.2 Basics of Cytometry
2(2)
1.2.1 Flow Cytometry
2(1)
1.2.2 Slide-Based Cytometry
3(1)
1.3 Cytomics
4(1)
1.4 Cytometry -- State of the Art
5(2)
1.4.1 Multiparametric Analyses
6(1)
1.5 Perspectives
7(9)
1.5.1 New Technologies and Methods
10(1)
1.5.1.1 Sequential Analyses
11(1)
1.5.1.2 Spectral Analyses
11(1)
1.5.1.3 Fluorescence Modifications for Analyses
12(1)
1.5.1.4 Label-Free Analyses
13(1)
1.5.2 Automation
14(1)
1.5.3 Cytometry -- the Other Side
15(1)
1.6 Conclusion
16(9)
References
16(9)
2 Novel Concepts and Requirements in Cytometry
25(10)
Herbert Schneckenburger
Michael Wagner
Petra Weber
Thomas Bruns
2.1 Introduction
25(1)
2.2 Fluorescence Microscopy
25(2)
2.2.1 Light Dose
25(1)
2.2.2 Cell Systems
26(1)
2.2.3 Methods
27(1)
2.3 Fluorescence Reader Systems
27(3)
2.3.1 Cell-Based Fluorescence Screening
27(1)
2.3.2 TIR Fluorescence Reader
28(2)
2.4 Microfluidics Based on Optical Tweezers
30(1)
2.5 Conclusion
30(5)
Acknowledgment
31(1)
References
31(4)
3 Optical Imaging of Cells with Gold Nanoparticle Clusters as Light Scattering Contrast Agents: A Finite-Difference Time-Domain Approach to the Modeling of Flow Cytometry Configurations
35(28)
Stoyan Tanev
Wenbo Sun
James Pond
Valery V. Tuchin
Vladimir P. Zharov
3.1 Introduction
35(2)
3.2 Fundamentals of the FDTD Method
37(8)
3.2.1 The Basic FDTD Numerical Scheme
37(2)
3.2.2 Input Wave Excitation
39(1)
3.2.3 Uniaxial Perfectly Matched Layer Absorbing Boundary Conditions
39(1)
3.2.4 FDTD Formulation of the Light Scattering Properties from Single Cells
40(2)
3.2.5 FDTD Formulation of Optical Phase Contrast Microscopic (OPCM) Imaging
42(3)
3.3 FDTD Simulation Results of Light Scattering Patterns from Single Cells
45(2)
3.3.1 Effect of Extracellular Medium Absorption on the Light Scattering Patterns
45(2)
3.4 FDTD OPCM Nanobioimaging Simulation Results
47(10)
3.4.1 Cell Structure
47(1)
3.4.2 Optical Clearing Effect
47(1)
3.4.3 The Cell Imaging Effect of Gold Nanoparticles
48(2)
3.4.3.1 A Cell with a Cluster of Gold Nanoparticles Located in the Cytoplasm
50(2)
3.4.3.2 A Cell with a Cluster of Gold Nanoparticles Randomly Distributed on the Surface of its Nucleus
52(5)
3.5 Conclusion
57(6)
Acknowledgment
59(1)
References
59(4)
4 Optics of White Blood Cells: Optical Models, Simulations, and Experiments
63(32)
Valeri P. Maltsev
Alfons G. Hoekstra
Maxim A. Yurkin
4.1 Introduction
63(2)
4.1.1 White Blood Cells
63(1)
4.1.2 Particle Identification and Characterization
63(1)
4.1.3 Experimental Techniques
64(1)
4.2 Optical Models of White Blood Cells
65(4)
4.2.1 Confocal Imaging of White Blood Cells
65(1)
4.2.2 Optical Models of Mononuclear Cells
65(2)
4.2.3 Optical Models of Granular Cells
67(1)
4.2.4 Refractive Indices of White Blood Cells and their Organelles
68(1)
4.3 Direct and Inverse Light-Scattering Problems for White Blood Cells
69(9)
4.3.1 Simulation of Light Scattering by Mononuclear Cells
69(1)
4.3.2 Simulation of Light Scattering by Granular Cells
70(1)
4.3.2.1 Granulocyte Model Without Nucleus
70(2)
4.3.2.2 Approximate Theories
72(1)
4.3.2.3 Neutrophil Model with Nucleus
72(1)
4.3.3 Inverse Light-Scattering Problem for Mononuclear Cells
73(1)
4.3.3.1 Global Optimization
74(1)
4.3.3.2 Errors of Parameter Estimates
74(2)
4.3.3.3 Theoretical Tests Based on More Complicated Model
76(1)
4.3.3.4 Sample Characterization
77(1)
4.4 Experimental Measurement of Light Scattering by White Blood Cells
78(11)
4.4.1 Scanning Flow Cytometer
78(1)
4.4.1.1 The Current State of the Art of the SFC
79(1)
4.4.1.2 Mueller Matrix of the SFC
80(1)
4.4.2 Differential Scattering Cross Section of White Blood Cells
81(1)
4.4.3 Measurement of Light Scattering of Mononuclear Cells
82(2)
4.4.4 Characterization of Mononuclear Cells from Light Scattering
84(3)
4.4.5 Measurement of Light Scattering of Granular Cells
87(2)
4.5 Conclusion
89(6)
Acknowledgments
90(1)
References
90(5)
5 Optical Properties of Flowing Blood Cells
95(38)
Martina C. Meinke
Moritz Friebel
Jurgen Helfmann
5.1 Introduction
95(1)
5.2 Blood Physiology
96(4)
5.2.1 Blood Composition
96(2)
5.2.2 Clinical Parameters
98(1)
5.2.3 Physiological Conditions
99(1)
5.3 Complex Refractive Index of Hemoglobin
100(2)
5.4 Light Propagation in Turbid Media
102(2)
5.4.1 Monte Carlo Simulation
104(1)
5.5 Method for the Determination of Optical Properties of Turbid Media
104(5)
5.5.1 Integrating Sphere Measurements
104(2)
5.5.2 Principle of Inverse Monte Carlo Simulation
106(1)
5.5.3 Possibility of Determining the Intrinsic Parameters
107(1)
5.5.4 Preparation of the Blood Samples
108(1)
5.5.4.1 Red Blood Cells
108(1)
5.5.4.2 Plasma
108(1)
5.5.4.3 Platelets
109(1)
5.6 Optical Properties of Red Blood Cells
109(13)
5.6.1 Standard Red Blood Cells
110(2)
5.6.2 Optical Parameters of Red Blood Cells Dependent on Hematocrit
112(3)
5.6.3 Influence of Oxygen Saturation
115(2)
5.6.4 Influence of Shear Rate
117(1)
5.6.4.1 Shear Rate Range 0--200 s--1
118(1)
5.6.4.2 Shear Rate Range 200--600 s--1
119(1)
5.6.4.3 Shear Rates at 1000 s--1
119(1)
5.6.5 Influence of Osmolarity
119(3)
5.7 Optical Properties of Plasma
122(4)
5.7.1 Influence of the Surrounding Medium on Red Blood Cells
124(2)
5.8 Optical Properties of Platelets
126(1)
5.9 Comparison of Optical Influences Induced by Physiological Blood Parameters
127(2)
5.10 Summary
129(4)
Acknowledgments
129(1)
References
129(4)
6 Laser Diffraction by the Erythrocytes and Deformability Measurements
133(22)
Sergei Yu. Nikitin
Alexander V. Priezzhev
Andrei E. Lugovtsov
6.1 Introduction
133(1)
6.2 Parameters of the Erythrocytes
134(1)
6.3 Parameters of the Ektacytometer
135(1)
6.4 Light Scattering by a Large Optically Soft Particle
136(2)
6.5 Fraunhofer Diffraction
138(2)
6.6 Light Scattering by a Transparent Elliptical Disc
140(3)
6.7 Light Scattering by an Elliptical Disc with Arbitrary Coordinates of the Disc Center
143(1)
6.8 Light Diffraction by an Ensemble of Particles
144(1)
6.9 Light Diffraction by Particles with Random Coordinates
145(1)
6.10 Light Scattering by Particles with Regular Coordinates
146(1)
6.11 Description of the Experimental Setup
147(2)
6.12 Sample Preparation Procedure
149(1)
6.13 Examples of Experimental Assessment of Erythrocyte Deformability in Norm and Pathology
150(3)
6.14 Conclusion
153(2)
References
153(2)
7 Characterization of Red Blood Cells' Rheological and Physiological State Using Optical Flicker Spectroscopy
155(56)
Vadim L. Kononenko
7.1 Introduction
155(1)
7.2 Cell State-Dependent Mechanical Properties of Red Blood Cells
156(2)
7.3 Flicker in Erythrocytes
158(15)
7.3.1 Phenomenology of Cell Membrane Flickering
159(1)
7.3.2 Theoretical Models of Flicker
160(2)
7.3.2.1 Models with Various Cell Shape under Thermal Excitation
162(4)
7.3.2.2 Flat Disk Model
166(5)
7.3.2.3 Active Excitation Mechanisms
171(2)
7.4 Experimental Techniques for Flicker Measurement in Blood Cells
173(14)
7.4.1 Measurement of Frequency Spectra of Membrane Flickering
173(1)
7.4.1.1 Phase Contrast and Laser Probing of Central Part of Erythrocyte Disk
173(5)
7.4.1.2 Point Probing of Cell Edge Fluctuations
178(1)
7.4.2 Quantitative Phase Imaging of Entire Cell
179(3)
7.4.3 Registration of Fluctuations in Cell Circumference Shape
182(1)
7.4.4 Fundamental Difference between the Registered Spectra and the Intrinsic Flicker Spectrum
183(4)
7.5 The Measured Quantities in Flicker Spectroscopy and the Cell Parameters Monitored
187(5)
7.5.1 Frequency Spectra
187(1)
7.5.1.1 Disk Face Area of Erythrocyte
187(1)
7.5.1.2 Equatorial Contour and Rim Area
188(1)
7.5.2 Modal Composition
189(1)
7.5.2.1 Disk Face Area of Erythrocyte
189(2)
7.5.2.2 Equatorial Contour
191(1)
7.5.3 Mean Square Amplitude Distribution
191(1)
7.6 Flicker Spectrum Influence by Factors of Various Nature
192(9)
7.6.1 Ambient Physical Conditions
193(1)
7.6.1.1 Effect of Medium Viscosity
193(1)
7.6.1.2 Effect of Ambient Temperature
194(1)
7.6.1.3 Effect of Medium Tonicity
195(2)
7.6.2 Modification of Cell Mechanical Properties
197(1)
7.6.3 Physiologically Active Substances and Medicinal Drugs
198(2)
7.6.4 Erythrocyte Flicker at Human Pathologies
200(1)
7.7 Membrane Flicker and Erythrocyte Functioning
201(2)
7.8 Flicker in Other Cells
203(1)
7.9 Conclusions
204(7)
References
205(6)
8 Digital Holographic Microscopy for Quantitative Live Cell Imaging and Cytometry
211(28)
Bjorn Kemper
Jurgen Schnekenburger
8.1 Introduction, Motivation, and Background
211(1)
8.2 Principle of DHM
212(9)
8.2.1 DHM Setup and Imaging
212(1)
8.2.2 Evaluation of Digital Holograms
213(3)
8.2.3 Quantitative Phase Contrast Imaging and Cell Thickness Determination
216(1)
8.2.4 DHM Multifocus Imaging and Cell Tracking
217(4)
8.3 DHM in Cell Analysis
221(13)
8.3.1 Cell Cultures
222(1)
8.3.2 DHM Cell Thickness Measurements
223(1)
8.3.3 Dynamic Cell Thickness Monitoring in Toxicology
224(3)
8.3.4 Label-Free Detection of Apoptotic Processes
227(1)
8.3.5 Determination of the Integral Refractive Index of Cells in Suspension
228(4)
8.3.6 Identification of Subcellular Structures
232(2)
8.4 Conclusion
234(5)
Acknowledgment
234(1)
References
234(5)
9 Comparison of Immunophenotyping and Rare Cell Detection by Slide-Based Imaging Cytometry and Flow Cytometry
239(34)
Jozsef Bocsi
Anja Mittag
Attila Tarnok
9.1 Introduction
239(8)
9.1.1 Cytometry of Equal Quality?
240(1)
9.1.2 Fluorescence Analyses
240(1)
9.1.2.1 Excitation and Emission of Fluorescent Dyes
240(1)
9.1.2.2 Quantum Dots
241(2)
9.1.2.3 Bleaching Characteristics of Dyes
243(1)
9.1.2.4 Fluorescent Light Detection
243(1)
9.1.2.5 Spillover Characteristics
244(1)
9.1.3 Two Ways of Cytometric Analysis
244(1)
9.1.3.1 Flow Cytometry
244(2)
9.1.3.2 Slide-Based Cytometry
246(1)
9.2 Comparison of Four-Color CD4/CD8 Leukocyte Analysis by SFM and FCM Using Qdot Staining
247(3)
9.2.1 Analysis of Lymphocytes by SFM and FCM
247(1)
9.2.2 Comparison of CD4/CD8 Ratio
248(2)
9.3 Comparison of Leukocyte Subtyping by Multiparametric Analysis with LSC and FCM
250(6)
9.3.1 Different Triggering in LSC Analysis
250(4)
9.3.2 Immunophenotyping by FCM and LSC
254(2)
9.3.3 Multicolor Analyses
256(1)
9.4 Absolute and Relative Tumor Cell Frequency Determinations
256(6)
9.4.1 Comparison of Cell Counts
257(1)
9.4.1.1 Dilution Series
257(2)
9.4.1.2 Rare Cell Analysis
259(1)
9.4.2 Analysis Documentation
259(2)
9.4.3 Limitations
261(1)
9.5 Analysis of Drug-Induced Apoptosis in Leukocytes by Propidium Iodide
262(4)
9.5.1 Induction of Apoptosis
263(2)
9.5.2 Apoptosis Detection by SBC and FCM
265(1)
9.6 Conclusion
266(7)
Acknowledgment
266(1)
References
266(7)
10 Microfluidic Flow Cytometry: Advancements toward Compact, Integrated Systems
273(38)
Shawn O. Meade
Jessica Godin
Chun-Hao Chen
Sung Hwan Cho
Frank S. Tsai
Wen Qiao
Yu-Hwa Lo
10.1 Introduction
273(2)
10.1.1 Main Components of a Full-Scale Flow Cytometer
273(1)
10.1.1.1 Fluidic Control System
273(1)
10.1.1.2 Optical Detection System
274(1)
10.1.1.3 Sorting Modules
274(1)
10.1.2 Microfluidic Flow Cytometry
275(1)
10.2 On-Chip Flow Confinement
275(8)
10.2.1 A General Discussion of Flow Confinement Forces
276(1)
10.2.2 Two-Dimensional Flow Confinement
277(1)
10.2.3 Three-Dimensional Flow Confinement
278(5)
10.3 Optical Detection System
283(14)
10.3.1 The Many Benefits of Integrated Optics
283(1)
10.3.2 Developing the Tools of the Trade
284(1)
10.3.2.1 Light-Guiding Elements
284(2)
10.3.2.2 Two-Dimensional Refractive Elements
286(2)
10.3.2.3 Improving Quality of On-Chip Optics
288(2)
10.3.2.4 Light-Stopping and Reflecting Elements
290(1)
10.3.2.5 Spectral Separation
290(1)
10.3.2.6 Tunable Liquid-Core Waveguides and Lenses
290(2)
10.3.3 Opportunities for Significant Improvements over Bulk Optical Systems
292(5)
10.4 On-Chip Sorting
297(9)
10.4.1 Electrokinetic Sorting
297(1)
10.4.2 Sorting by Dielectrophoresis
298(1)
10.4.3 Sorting by Optical Force
299(1)
10.4.4 Hydrodynamic Sorting
300(1)
10.4.4.1 Hydrodynamic Sorting with External Check Valves
301(1)
10.4.4.2 Hydrodynamic Sorting with Piezoelectric Actuators
301(5)
10.5 Conclusion
306(5)
Acknowledgments
306(1)
References
306(5)
11 Label-Free Cell Classification with Diffraction Imaging Flow Cytometer
311(22)
Xin-Hua Hu
Jun Q. Lu
11.1 Introduction
311(2)
11.2 Modeling of Scattered Light
313(5)
11.2.1 The Correlation between Scattered Light Distribution and Cellular Structure
314(2)
11.2.2 The Formulation of Stokes Vector and Muller Matrix
316(2)
11.3 FDTD Simulation with 3D Cellular Structures
318(4)
11.3.1 The FDTD Algorithm
318(3)
11.3.2 Acquisition of 3D Cell Structure through Confocal Imaging
321(1)
11.4 Simulation and Measurement of Diffraction Images
322(5)
11.4.1 Numerical Results Based on FDTD Simulations
323(2)
11.4.2 Experimental Results Acquired with a Diffraction Imaging Flow Cytometer
325(2)
11.5 Summary
327(6)
Acknowledgments
328(1)
References
328(5)
12 An Integrative Approach for Immune Monitoring of Human Health and Disease by Advanced Flow Cytometry Methods
333(30)
Rahindra Tirouvanziam
Daisy Diaz
Yael Gernez
Julie Laval
Monique Crubezy
Megha Makam
12.1 Introduction
333(2)
12.2 Optimized Protocols for Advanced Flow Cytometric Analysis of Human Samples
335(6)
12.2.1 Key Limitations of Current Experimental Approaches: Technical and Scientific Biases
335(1)
12.2.2 Developing Better Protocols for Flow Cytometry Studies of Cells from Human Subjects: Enabling Holistic Studies of Human Health and Disease
336(3)
12.2.3 Integrating Flow Cytometry into a Wider Framework for Experimental Research on Human Samples
339(2)
12.3 Reagents for Advanced Flow Cytometric Analysis of Human Samples
341(14)
12.3.1 Antibody Probes
341(6)
12.3.2 Nonantibody Probes
347(5)
12.3.3 Adapting Protocols to the Research Question at Hand: A Few Practical Examples
352(3)
12.4 Conclusion: The Future of Advanced Flow Cytometry in Human Research
355(8)
Acknowledgments
359(1)
Abbreviations
359(1)
References
360(3)
13 Optical Tweezers and Cytometry
363(24)
Raktim Dasgupta
Pradeep Kumar Gupta
13.1 Introduction
363(1)
13.2 Optical Tweezers: Manipulating Cells with light
364(3)
13.2.1 Basics Principles
364(2)
13.2.2 Experimental Considerations
366(1)
13.3 Use of Optical Tweezers for the Measurement of Viscoelastic Parameters of Cells
367(9)
13.3.1 Red Blood Cells
368(1)
13.3.1.1 Use of Multiple Optical Traps
369(3)
13.3.1.2 Use of Counterpropagating light Beams
372(1)
13.3.1.3 Use of Evanescent Wave of light
373(1)
13.3.1.4 Use of Viscous Drag on Optically Trapped Cell
373(1)
13.3.2 Cancer Cells
374(2)
13.3.3 Stem Cells
376(1)
13.4 Cytometry with Raman Optical Tweezers
376(5)
13.4.1 Raman Optical Tweezers: Basics
376(2)
13.4.2 Cytometry Applications
378(1)
13.4.2.1 Real-Time Study of Dynamic Processes in Single Cell
378(1)
13.4.2.2 Identification and Sorting of Microorganism
379(2)
13.4.2.3 Studies on Disease Diagnosis
381(1)
13.5 Cell Sorting
381(2)
13.6 Summary
383(4)
References
383(4)
14 In vivo Image Flow Cytometry
387(46)
Valery V. Tuchin
Ekaterina I. Galanzha
Vladimir P. Zharov
14.1 Introduction
387(1)
14.2 State of the Art of Intravital Microscopy
388(13)
14.2.1 General Requirements
388(1)
14.2.2 Intravital Video Microscopy (IVM)
389(1)
14.2.3 Fluorescent Intravital Video Microscopy (FIVM)
389(1)
14.2.4 Experimental Preparations for IVM: Animal Models
390(2)
14.2.5 Microcirculation and Cell Flow Examination
392(1)
14.2.5.1 Microcirculation and Cell Flow
392(1)
14.2.5.2 Light Microscopy
392(1)
14.2.5.3 High-Resolution High-Speed Transmission Digital Microscopy (TDM)
393(2)
14.2.5.4 Monitoring of Cells in Lymph Flow
395(1)
14.2.5.5 Fluorescent Image Microscopy
396(1)
14.2.5.6 Laser Scanning Microscopy
397(2)
14.2.5.7 Laser Doppler Perfusion Imaging and Laser Speckle Contrast Imaging
399(1)
14.2.5.8 Other Intravital Techniques
400(1)
14.2.5.9 Conclusion
401(1)
14.3 In vivo Lymph Flow Cytometry
401(14)
14.3.1 Basic Idea: Natural Cell-Focusing Phenomenon
401(1)
14.3.2 Animal Model and Experimental Arrangement
402(4)
14.3.3 Lymph Flow Velocity Measurements
406(3)
14.3.4 Imaging of Cells and Lymphatic Structures
409(6)
14.3.5 Summary
415(1)
14.4 High-Resolution Single-Cell Imaging in Lymphatics
415(3)
14.4.1 The High-Speed TDM
415(2)
14.4.2 Optical Clearing for In vivo Label-Free Image Cytometry
417(1)
14.5 In vivo Blood Flow Cytometry
418(6)
14.5.1 The Specificity of Blood Flow Cytometry
418(3)
14.5.2 The High-Speed, High-Resolution Imaging Blood Flow Cytometry
421(1)
14.5.3 The Limitations and Future Perspectives
422(1)
14.5.4 Summary
423(1)
14.6 Conclusion
424(9)
Acknowledgments
424(1)
References
425(8)
15 Instrumentation for In vivo Flow Cytometry -- a Sickle Cell Anemia Case Study
433(30)
Stephen P. Morgan
Ian M. Stockford
15.1 Introduction
433(1)
15.2 Clinical Need
434(1)
15.3 Instrumentation
435(9)
15.3.1 Illumination Methods
435(1)
15.3.1.1 Orthogonal Polarization Spectral Imaging (OPS)
436(1)
15.3.1.2 Dark Field Epi-illumination (DFEI)
437(1)
15.3.1.3 Sidestream Dark Field (SSDF) Illumination
438(1)
15.3.2 Detection
439(3)
15.3.2.1 Custom-Made CMOS Sensors
442(2)
15.4 Image Processing
444(3)
15.5 Modeling
447(6)
15.5.1 Model Description
447(3)
15.5.2 Comparison of Illumination Techniques (DFEI, OPS, and SSDF)
450(1)
15.5.2.1 Proportion of "Useful" Photons
450(3)
15.5.2.2 Imaging Performance
453(1)
15.6 Device Design -- Sickle Cell Anemia Imaging System
453(2)
15.7 Imaging Results -- Sickle Cell Anemia Imaging System
455(3)
15.8 Discussion and Future Directions
458(5)
References
459(4)
16 Advances in Fluorescence-Based In vivo Flow Cytometry for Cancer Applications
463(38)
Cherry Greiner
Irene Georgakoudi
16.1 Introduction
463(1)
16.2 Background: Cancer Metastasis
464(2)
16.3 Clinical Relevance: Role of CTCs in Cancer Development and Response to Treatment
466(2)
16.3.1 Detection and Enumeration of Circulating Non-Epithelial Cancer Cells
467(1)
16.4 Current Methods
468(6)
16.4.1 Enrichment Techniques
468(2)
16.4.2 Detection Techniques
470(4)
16.4.3 Summary
474(1)
16.5 In vivo Flow Cytometry (IVFC)
474(3)
16.6 Single-Photon IVFC (SPIVFC)
477(8)
16.6.1 Principles, Advantages, and Limitations
477(3)
16.6.2 Instrumentation
480(1)
16.6.2.1 Two-Color SPIVFC
480(2)
16.6.2.2 Imaging IVFC
482(1)
16.6.2.3 Retinal Flow IVFC
482(1)
16.6.3 Applications in Enumeration of CTCs
483(2)
16.7 Multiphoton IVFC (MPIVFC)
485(7)
16.7.1 Principles, Advantages, and Limitations
485(2)
16.7.2 Instrumentation
487(1)
16.7.2.1 Two-Color and Extended Laser MPIVFC
487(2)
16.7.2.2 Two-Beam MPIVFC
489(1)
16.7.2.3 Fiber-Based MPIVFC
489(1)
16.7.3 Applications in Enumeration of CTCs
490(2)
16.8 Summary and Future Directions
492(9)
Acknowledgments
495(1)
References
495(6)
17 In vivo Photothermal and Photoacoustic Flow Cytometry
501(72)
Valery V. Tuchin
Ekaterina I. Galanzha
Vladimir P. Zharov
17.1 Introduction
501(1)
17.2 Photothermal and Photoacoustic Effects at Single-Cell Level
502(5)
17.2.1 Basic Principles
502(3)
17.2.2 Signal Description
505(2)
17.3 PT Technique
507(11)
17.3.1 PT Spectroscopy
507(1)
17.3.2 PT Scanning Image Cytometry
508(1)
17.3.3 PT Flow Cytometery (PTFC)
508(1)
17.3.3.1 PT Image Flow Cytometry
508(3)
17.3.3.2 PTFC System and Its Image Resolution
511(3)
17.3.3.3 PTFC with Thermal-Lens Mode
514(1)
17.3.3.4 PTFC Integrating Thermal-Lens and Imaging Modes
515(3)
17.4 Integrated PTFC for In vivo Studies
518(6)
17.4.1 General Schematics of the Instrument
518(3)
17.4.2 High-Resolution Imaging of Flowing Cells
521(2)
17.4.3 PT Identification of Cells
523(1)
17.4.4 Cell Targeting with Gold Nanoparticles
523(1)
17.5 Integrated PAFC for In vivo Studies
524(15)
17.5.1 Schematics of the Instrument
524(2)
17.5.2 Animal Models
526(1)
17.5.3 Contrast Agents for PAFC
526(2)
17.5.4 PAFC Testing and Applications
528(1)
17.5.4.1 Testing on Noninvasiveness
528(1)
17.5.4.2 PAFC Testing Using Vital Dyes
528(2)
17.5.4.3 PAFC Detection of Circulating Nanoparticles
530(3)
17.5.4.4 PA Detection of Single Circulating Bacteria
533(4)
17.5.4.5 PAFC Benefits and Potentialities
537(2)
17.6 In vivo Lymph Flow Cytometery
539(8)
17.6.1 Principles and Main Applications of Lymph FC
539(1)
17.6.1.1 Schematics of Integrated Lymph FC
539(2)
17.6.1.2 Label-Free Counting of Metastatic Melanoma Cells
541(1)
17.6.1.3 Label-Free PA Detection of Lymphocytes
542(1)
17.6.1.4 Real-Time Two-Wavelength Lymph FC with Multicolor Probes
543(1)
17.6.2 High-Resolution Single-Cell Imaging
543(1)
17.6.2.1 High-Speed Imaging
543(1)
17.6.2.2 Capability of Multimodal Cell Imaging
544(2)
17.6.2.3 Conclusion Remarks
546(1)
17.7 In vivo Mapping of Sentinel Lymph Nodes (SLNs)
547(11)
17.7.1 Motivation for Cancer Prognoses
547(1)
17.7.2 Fiber-Based Multimodal Diagnostic-Therapeutic Platform
548(1)
17.7.2.1 Experimental Arrangement and Methodology
548(1)
17.7.2.2 Contrasting Agents, Cells under Study, and Animal Model
549(1)
17.7.3 In vivo and In vitro SLN Studies
550(1)
17.7.3.1 SLN Examination
550(1)
17.7.3.2 Two-Wavelength PA Lymphography with Multicolor Nanoparticles
550(1)
17.7.3.3 Melanoma Model: Detection of Tumor Cells in Lymphatics and SLNs
551(1)
17.7.3.4 PA Detection of Breast Cancer Metastases in SLNs with Functionalized Nanoparticles
552(2)
17.7.3.5 Targeted Laser PT Purging Metastases in a SLN
554(2)
17.7.4 Discussion of PA/PT Platform Benefits and Perspectives
556(2)
17.8 Concluding Remarks and Discussion
558(15)
Acknowledgments
563(1)
References
563(10)
18 Optical Instrumentation for the Measurement of Blood Perfusion, Concentration, and Oxygenation in Living Microcirculation
573(32)
Martin J. Leahy
Jim O'Doherty
18.1 Introduction
573(4)
18.2 Xe Clearance
577(1)
18.3 Nailfold Capillaroscopy
577(5)
18.3.1 Data Analysis
579(1)
18.3.2 Applications
580(1)
18.3.3 Limitations and Improved Analysis
581(1)
18.4 LDPM/LDPI
582(1)
18.4.1 Principles of Operation of LDPI
582(1)
18.5 Laser Speckle Perfusion Imaging (LSPI)
583(1)
18.6 TiVi
584(2)
18.6.1 Principles of Operation of TiVi
584(2)
18.7 Comparison of TiVi, LSPI, and LDPI
586(6)
18.7.1 Laser Doppler Imaging -- Moor Instruments -- MoorLDLS
586(1)
18.7.2 Laser Speckle Imaging -- Moor Instruments -- MoorFLPI
587(1)
18.7.3 Polarization Spectroscopy -- Wheels Bridge -- Tissue Viability TiVi Imager
588(1)
18.7.4 Comparison of Imaging Systems
588(2)
18.7.5 Discussion
590(2)
18.8 Pulse Oximetry
592(5)
18.8.1 Historical and Literature Review
592(3)
18.8.2 Alternative Methods for Measurement of Oxygenation
595(1)
18.8.3 Transcutaneous Oxygen Pressure (TCpO2)
595(1)
18.8.4 Near Infrared Spectroscopy (NIRS)
596(1)
18.8.5 Luminescence Quenching (Fluorescence and Phosphorescence)
597(1)
18.9 Conclusions
597(8)
Acknowledgments
598(1)
References
599(6)
19 Blood Flow Cytometry and Cell Aggregation Study with Laser Speckle
605(22)
Qingming Luo
Jianjun Qiu
Pengcheng Li
19.1 Introduction
605(1)
19.2 Laser Speckle Contrast Imaging
605(3)
19.2.1 Fundamentals
605(2)
19.2.2 Instrumentation
607(1)
19.3 Investigation of Optimum Imaging Conditions with Numerical Simulation
608(6)
19.3.1 Static Speckle Field Simulation
608(2)
19.3.2 Dynamic Speckle Field Simulation
610(1)
19.3.3 Speckle Size and Speckle Contrast
611(1)
19.3.4 Specificities of CCD Camera and Speckle Contrast
612(2)
19.4 Spatio-Temporal Laser Speckle Contrast Analysis
614(4)
19.4.1 Spatial Based Method
614(1)
19.4.2 Temporal Based Method
615(1)
19.4.3 Spatio-Temporal Based Method
615(1)
19.4.4 Theoretical and Experimental Comparisons
616(2)
19.5 Fast Blood Flow Visualization Using GPU
618(3)
19.5.1 CPU-Based Solutions for LSCI Data Processing
618(2)
19.5.2 GPU-Based Solution for LSCI Data Processing
620(1)
19.6 Detecting Aggregation of Red Blood Cells or Platelets Using Laser Speckle
621(2)
19.7 Conclusion
623(4)
Acknowledgments
624(1)
References
624(3)
20 Modifications of Optical Properties of Blood during Photodynamic Reactions In vitro and In vivo
627(72)
Alexandre Douplik
Alexander Stratonnikov
Olga Zhernovaya
Viktor Loshchenov
20.1 Introduction
627(1)
20.2 Description and Brief History of PDT
627(1)
20.3 PDT Mechanisms
628(4)
20.4 Blood and PDT
632(1)
20.5 Properties of Blood, Blood Cells, and Photosensitizers: Before Photodynamic Reaction
633(18)
20.5.1 Main Physiological Properties of Blood (Hematocrit, Hemoglobin, Oxygenation, Share Rate) Coupled with Its Absorption, Scattering, and Autofluorescence
633(4)
20.5.2 Blood and Blood Component Autofluorescence
637(1)
20.5.3 Overview of Optical Properties of Contemporary Photosensitizers Used for Systemic Administration
638(3)
20.5.4 Interaction of Photosensitizers with Blood Cells: Uptake Locations and Pharmacokinetics
641(1)
20.5.5 Alteration of the Optical Properties of the Photosensitizers Dissolved in Blood
642(9)
20.6 Photodynamic Reactions in Blood and Blood Cells, Blood Components, and Cells
651(5)
20.6.1 Photodynamic Modifications and Alterations of Blood Plasma and Plasma Proteins
651(1)
20.6.2 Photodynamic Modifications and Alterations of Red Blood Cells (Erythrocytes)
651(3)
20.6.3 Photodynamic Modifications and Alterations of White Blood Cells (Leucocytes)
654(1)
20.6.4 Photodynamic Modifications and Alterations of Blood Platelets (Thrombocytes)
654(2)
20.7 Types of Photodynamic Reactions in Blood: In vitro versus In vivo
656(2)
20.8 Blood Sample In vitro as a Model Studying Photodynamic Reaction
658(19)
20.8.1 Blood Heating Effects during PDT In vitro
660(1)
20.8.2 Monitoring of Oxygen Consumption, Photosensitizer Concentration, and Fluence Rate during Photodynamic Therapy in Whole Blood and Individual Blood Cells
661(9)
20.8.3 Theoretical Model of Oxygen Consumption and Photobleaching in Blood during PDT In vitro
670(7)
20.9 Monitoring of Oxygen Consumption and Photobleaching in Blood during PDT In vivo
677(2)
20.10 Photodynamic Disinfection of Blood
679(3)
20.11 Photodynamic Therapy of Blood Cell Cancer
682(3)
20.12 Summary
685(14)
Acknowledgments
686(1)
Glossary
686(1)
References
687(12)
Index 699
Valery Tuchin is Head of Chair of Optics and Biomedical Physics and Director of Research-Educational Institute of Optics and Biophotonics at Saratov State University. He has authored more than 250 papers and books, including his latest, Tissue Optics. Light Scattering Methods and Instrumentation for Medical Diagnosis (SPIE Tutorial Texts in Optical Engineering, Vol. TT38, 2000; second edition, PM166, 2007), Handbook of Optical Biomedical Diagnostics (SPIE Press, Vol. PM107, 2002), Coherent-Domain Optical Methods for Biomedical Diagnostics, Environmental and Material Science, Kluwer Academic Publishers, Boston, USA, vols. 1 & 2, 2004, Optical Clearing of Tissues and Blood (SPIE Press, Vol. PM154, 2005), and Optical Polarization in Biomedical Applications (co-authors L. Wang and D.A. Zimnyakov; Springer, 2006).

Some of the contributors: Martin Leahy, University of Limerick, Ireland Attila Tarnok, University of Leipzig, Germany Andreas O.H. Gerstner, University of Bonn, Germany Anja Mittag, University of Leipzig, Germany Megha Makam, Daisy Diaz, Rabindra Tirouvanziam, Stanford University School of Medicine, USA Steven Boutrus, Derrick Hwu & Cherry Greiner, Tufts University, MA, USA Michael Chan & Charlotte Kuperwasser, Tufts-New England Medical Center, MA, USA Charles P. Lin & Irene Georgakoudi, Harvard Medical School,MA, USA E.I. Galanzha, Saratov State University, Russia V.P. Zharov, Arkansas University of Medical Science, USA A.V. Priezzhev, A.G. Lugovtsov, S.Yu. Nikitin & Yu.I. Gurfinkel, Moscow State University, Russia Valeri P. Maltsev, Maxim A. Yurkin & Elena Eremina,Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia Alfons G. Hoekstra & Thomas Wriedt,University of Amsterdam, The Neverlands Peter Nagy % Gyorgy Vereb, Janos Szollsi, University of Debrecen, Hungary