Muutke küpsiste eelistusi

E-raamat: Advanced Polymeric Materials

Edited by (Mahatma Gandhi University, India), Edited by , Edited by (Point Pleasant, New Jersey, USA)
  • Formaat: 334 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000791334
  • Formaat - EPUB+DRM
  • Hind: 90,47 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 334 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000791334

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Recent advances in polymer research have led to the generation of high quality materials for various applications in day to day life. The synthesis of new functional monomers has shown strong potential in generating novel polymer materials with improved properties.

Advanced Polymeric Materials includes fundamentals and numerous examples of polymer blend preparation and characterizations. Developments in blends, polymer nanocomposites and its various characterization techniques are highlighted in the book.
Preface xv
List of Contributors xvii
List of Figures xxi
List of Tables xxvii
List of Abbreviations xxix
1 Bisbenzoxazine-Bismaleimide Blends: Thermal Studies 1(26)
S. Shamim Rishwana
M.M. Thahajjathul Kamila
C.T. Vijayakumar
1.1 Introduction
1(12)
1.2 Experimental
13(4)
1.2.1 Materials
13(1)
1.2.2 Synthesis of Bis(3,4-Dihydro-2H-3-Phenyl-1, 3-Benzoxazinyl) Isopropane (BAB)
13(1)
1.2.3 Synthesis of 2,2-Bis(4-Nitrophenoxyphenyl) Propane (DN-BPAPCNB)
14(1)
1.2.4 Preparation of 2,2-Bis(4-Aminophenoxy Phenyl) Propane (DA-BPAPCNB)
14(1)
1.2.5 Preparation of Bisamic Acid (BAX)
15(1)
1.2.6 Preparation of 2,2-Bis[ 4-(4-Maleimidophenoxy Phenyl)]propane (EXBMI)
16(1)
1.2.7 Blending of the Materials
16(1)
1.2.8 Polymerization of the Materials
16(1)
1.2.9 FTIR Studies
16(1)
1.2.10 Differential Scanning Calorimetric (DSC) Studies
17(1)
1.2.11 Thermogravimetric (TG) Studies
17(1)
1.3 Results and Discussion
17(6)
1.3.1 FUR Studies
17(3)
1.3.2 DSC Studies
20(2)
1.3.3 TG and DTG Studies
22(1)
1.4 Conclusions
23(1)
Acknowledgements
24(1)
References
24(3)
2 Studies on Thermosetting Resin Blends: Bispropargyl Ether-Bismaleimide 27(32)
J. Dhanalakshmi
K.G. Sudhamani
C.T. Vijayakumar
2.1 Introduction
27(19)
2.1.1 Thermosetting Resins
27(1)
2.1.2 High Performance Thermosets
28(1)
2.1.3 Bismaleimide
29(2)
2.1.4 Acetylene-terminated Resins (ATRs)
31(1)
2.1.5 Propargyl-terminated Resins (PTRs)
32(2)
2.1.6 Property Enhancement in PT Resins
34(1)
2.1.7 Literature
35(11)
2.2 Experimental
46(2)
2.2.1 Preparation of BPEBPA, BMIM, and BMIE
46(1)
2.2.2 Blending of Bispropargyl Ether of Bisphenol-A with BMIM and BMIE
47(1)
2.2.3 Thermal Curing of the Materials
47(1)
2.2.4 Methods
47(1)
2.2.4.1 FTIR analysis
47(1)
2.2.4.2 DSC analysis
48(1)
2.2.4.3 TG analysis
48(1)
2.3 Results and Discussion
48(7)
2.3.1 FTIR Studies
48(1)
2.3.2 DSC Studies
49(3)
2.3.3 TG and DTG Studies
52(3)
2.4 Conclusions
55(1)
Acknowledgements
56(1)
References
56(3)
3 Synthesis, Characterization, Magnetic, Thermal and Electrochemical Studies of Oxovanadium(IV) Complex of 2-thiophenecarba Benzhydrazone 59(14)
Jyothy G. Vijayan
3.1 Introduction
60(1)
3.2 Experimental
60(2)
3.2.1 Physical Measurements
60(1)
3.2.2 Materials
61(1)
3.2.3 Synthesis of Ligand
61(1)
3.2.3.1 Synthesis of 2-thiophenecarba benzhydrazone
61(1)
3.2.4 Synthesis of Complex
61(1)
3.2.4.1 Preparation of 2-thiophenecarba benzhydrazonato oxovanadium(IV)
61(1)
3.3 Results and Discussion
62(7)
3.3.1 Characterization of the Ligand (2-Thiophenecarba Benzhydrazone)
62(1)
3.3.2 Characterization of the Complex
63(6)
3.3.3 Proposed Structure of the Complex
69(1)
3.4 Conclusion
69(1)
Acknowledgements
70(1)
References
70(3)
4 Sorption and Desorption Analyses of Sorbents for Oil-spill Control 73(28)
Neha Bhardwaj
Ashok N. Bhaskarwar
4.1 Introduction
74(7)
4.1.1 Pollution-prevention Application of Polymers
75(1)
4.1.2 Problem of Oil Spill
76(5)
4.2 Factors Affecting the Performance of Sorbents
81(2)
4.3 Sorption and Desorption Kinetics
83(12)
4.3.1 Sorption Kinetics
83(3)
4.3.2 Desorption Models
86(3)
4.3.3 Sorption-desorption Analysis of Polyurethane Foam
89(6)
4.4 Conclusion
95(1)
References
95(6)
5 Polyhexahydrotriazines: Synthesis and Thermal Studies 101(20)
Nitish Paul Tharakan
J. Dhanalakshmi
C.T. Vijayakumar
5.1 Introduction
101(10)
5.1.1 Polymer
101(1)
5.1.2 Classification based on Thermal Behavior
102(1)
5.1.3 Thermosetting Polymer
102(2)
5.1.4 Thermoset Materials
104(7)
5.1.4.1 Phenol formaldehyde
104(1)
5.1.4.1.1 Novolacs
104(1)
5.1.4.1.2 Resoles
104(1)
5.1.4.2 Urea-formaldehyde resin
105(1)
5.1.4.3 Melamine formaldehyde resin
106(1)
5.1.4.4 Unsaturated polyester resin
106(1)
5.1.4.5 Epoxy resins
107(1)
5.1.4.6 Bismaleimides
107(1)
5.1.4.7 Bispropargyl ethers
108(1)
5.1.4.8 Cyanate ester
109(1)
5.1.4.9 Triazines
110(1)
5.1.4.10 Polyhexahydrotriazine
110(1)
5.2 Experimental
111(2)
5.2.1 Preparation of Hemiaminal Using 4,4'-Methylenedianiline (HA-MDA)
111(2)
5.2.2 Thermal Curing
113(1)
5.2.3 Methods
113(1)
5.3 Results and Discussion
113(5)
5.3.1 FTIR Studies
113(2)
5.3.2 Thermal Studies
115(3)
5.4 Conclusion
118(1)
Acknowledgements
118(1)
References
119(2)
6 Influence of Cement Behavior with and without Polymer Nano Composites 121(22)
Mainak Ghosal
Arun Kumar Chakraborty
6.1 Introduction
122(9)
6.2 Experimental Program
131(3)
6.2.1 Tests on Cement Mortar
132(2)
6.3 Results
134(1)
6.4 Discussions of Test Results
134(5)
6.4.1 Physical Characteristics
136(1)
6.4.2 Dispersion Mechanism
137(2)
6.4.3 Compressive Strength
139(1)
6.5 Conclusions
139(1)
References
139(4)
7 Effect of Structure of Diphenol on Polymerization of Bis(isoimide) 143(28)
V. Sarannya
R. Surender
S. Shamim Rishwana
R. Mahalakshmy
C.T. Vijayakumar
7.1 Introduction
143(17)
7.1.1 High-performance Thermosetting Resin
143(1)
7.1.2 Alkyd Resins
144(1)
7.1.3 Amino Resins
145(1)
7.1.4 Unsaturated Polyester Resins
145(1)
7.1.5 Ally! Resins
145(1)
7.1.6 Epoxy Resins
146(1)
7.1.7 Polyurethanes
146(1)
7.1.8 Silicone Resins
146(1)
7.1.9 Cyanate Ester Resins
147(1)
7.1.10 Phenolic Resins
147(2)
7.1.10.1 Allyl functional phenols
148(1)
7.1.10.2 Bisoxazoline phenols
148(1)
7.1.10.3 Phenolic resins epoxy systems
149(1)
7.1.11 Polyimide
149(2)
7.1.11.1 Classification of polyimides
150(1)
7.1.11.2 Properties of polyimide
150(1)
7.1.12 Bismaleimides (BMIs)
151(2)
7.1.13 Isoimides
153(2)
7.1.14 Polyisoimide
155(1)
7.1.15 Bis(isoimides)
155(1)
7.1.16 Maleimide and Isomaleimide
156(4)
7.2 Experimental
160(2)
7.2.1 Materials
160(1)
7.2.2 Preparation of Bis(isoimide) of 4,4'-Methylene Dianiline
160(1)
7.2.3 Blending of Bisphenols with Bis(isoimide) (VS)
160(1)
7.2.4 Thermal Curing
161(1)
7.2.5 Fourier-transform Infrared (FTIR) Studies
161(1)
7.2.6 Differential Scanning Calorimetric (DSC) Studies
162(1)
7.2.7 Thermogravimetric (TG) Studies
162(1)
7.3 Results and Discussion
162(5)
7.3.1 Fourier-transform Infrared Studies
162(1)
7.3.2 Differential Scanning Calorimetric Studies
163(3)
7.3.3 TG and DTG Studies
166(1)
7.4 Conclusion
167(1)
Acknowledgements
168(1)
References
168(3)
8 Natural Fiber Based Bio-materials: A Review on Processing, Characterization and Applications 171(22)
M.K. Gupta
R.K. Srivastava
8.1 Composite Materials
171(4)
8.1.1 Particle Reinforced Composite
172(1)
8.1.2 Fiber-reinforced Composite
173(1)
8.1.2.1 Continuous fiber composite
173(1)
8.1.2.2 Discontinuous fiber composite
173(1)
8.1.3 Laminate Composite
174(1)
8.1.4 Flake Composite
174(1)
8.1.5 Hybrid Composite
174(1)
8.2 Classification Based on Matrix Materials
175(1)
8.2.1 Metal Matrix Composite
175(1)
8.2.2 Ceramic Matrix Composite
175(1)
8.2.3 Polymer Matrix Composite
176(1)
8.3 Natural Fiber Reinforced Polymer Composites
176(8)
8.3.1 Matrix
177(1)
8.3.2 Reinforcement
177(1)
8.3.3 Fabrication Methods
177(5)
8.3.3.1 Hand lay-up
178(3)
8.3.3.2 Compression moulding
181(1)
8.3.3.3 Injection moulding
181(1)
8.3.3.4 Pultrusion
181(1)
8.3.3.5 Filament winding
182(1)
8.3.4 Structure of Natural Fiber
182(2)
8.4 Characterization
184(3)
8.4.1 Mechanical Characterization
184(1)
8.4.2 Thermal Characterization
185(1)
8.4.3 Water Absorption Properties
186(1)
8.4.4 Tribological Behavior
187(1)
8.5 Application of Natural Fiber Reinforced Polymer Composite
187(1)
8.6 Conclusion
188(1)
References
189(4)
9 Tribological Performance of Polymer Composite Materials 193(54)
Raghvendra Kumar Mishra
Sajith T. Abdulrahman
9.1 Introduction
193(6)
9.2 Tribological Characterization Techniques for Polymer Composites
199(2)
9.3 Preparation of Polymer Nanocomposites
201(2)
9.4 Tribology Study of Different Polymer Nanocomposites
203(25)
9.4.1 Metallic Nanoparticles-based Polymer Nanocomposites
218(1)
9.4.2 Nanometal Oxide-based Polymer Nanocomposites
219(1)
9.4.3 Nanoclay-based Polymer Nanocomposites
220(1)
9.4.4 Carbon Nanotube-based Polymer Nanocomposites
221(1)
9.4.5 Graphene-based Polymer Nanocomposites
222(1)
9.4.6 Fullerenes-based Polymer Nanocomposites
223(1)
9.4.7 Nanodiamonds-based Polymer Nanocomposites
224(4)
9.5 Conclusion
228(1)
References
228(19)
10 Computational Modeling and Theoretical Strategies for the Design of Chiral Recognition Sites Using Molecular Imprinting Technology 247(16)
T. Sajini
Aravind Krishnan
Beena Mathew
10.1 Introduction
247(3)
10.1.1 Enantiomeric Sensing System Tailored by Molecular Imprinting Technology
248(2)
10.1.2 Computational Modeling
250(1)
10.2 Theoretical and Computational Strategies in MIPs
250(8)
10.3 Conclusions
258(1)
References
258(5)
11 Ultrafast Characterization 2D Semiconducting TMDC for Nanoelectronics Application 263(32)
Yadu Nath V.
Raghvendra Kumar Mishra
Neelakandan M.S.
Bilahari Aryat
Parvathy Prasad
Sabu Thomas
11.1 Introduction
263(1)
11.2 Ultrafast Characterization Process
264(1)
11.3 Ultrafast Characterization Techniques
265(1)
11.3.1 Ultrafast Transient Absorption
265(1)
11.3.2 Time-resolved Photo Electron Spectroscopy
265(1)
11.4 Graphene
266(1)
11.5 Two-Dimensional Semiconductors
266(1)
11.6 Direct and Indirect Band Gaps
267(1)
11.7 Transition Metal Dichalgogenide
267(2)
11.8 Preparation of Transition Metal Dichalcogenides
269(13)
11.8.1 Exfoliation Method for 2D Transition Metal Dichalcogenide
269(1)
11.8.2 Chemical Vapor Deposition for Two-dimensional Transition Metal Dichalcogenide
270(1)
11.8.3 Characterization of Transition Metal Dichalcogenide
271(7)
11.8.3.1 Optical properties
271(1)
11.8.3.2 Raman spectra
271(2)
11.8.3.3 Photoluminescence (PL) evaluation
273(1)
11.8.3.4 Electrical property
274(3)
11.8.3.5 Electrical transport property
277(1)
11.8.3.6 Electrical performance
277(1)
11.8.4 Different Types of TMDC Materials
278(2)
11.8.4.1 Ultrafast process in MoS2
278(1)
11.8.4.2 Ultrafast process in WSe2
279(1)
11.8.5 Application
280(2)
11.8.5.1 Digital electronic devices
281(1)
11.8.5.2 TMDC transistors
281(1)
11.8.5.3 Optoelectronics
281(1)
11.9 Conclusion
282(1)
References
282(13)
Index 295(2)
About the Editors 297
Didier Rouxel, Sabu Thomas, Nandakumar & Sajith Kalarikkal