Preface |
|
xv | |
|
|
1 | (56) |
|
|
1 | (3) |
|
|
1 | (2) |
|
|
3 | (1) |
|
1.2 Fabrication techniques |
|
|
4 | (6) |
|
1.2.1 Single-beam internal technique |
|
|
4 | (1) |
|
1.2.2 Dual-beam holographic technique |
|
|
5 | (2) |
|
1.2.3 Phase-mask technique |
|
|
7 | (1) |
|
1.2.4 Point-by-point fabrication technique |
|
|
8 | (1) |
|
1.2.5 Technique based on ultrashort optical pulses |
|
|
9 | (1) |
|
1.3 Grating characteristics |
|
|
10 | (10) |
|
1.3.1 Coupled-mode equations |
|
|
11 | (2) |
|
1.3.2 CW solution in the linear case |
|
|
13 | (1) |
|
|
14 | (2) |
|
1.3.4 Grating as an optical filter |
|
|
16 | (2) |
|
1.3.5 Experimental verification |
|
|
18 | (2) |
|
|
20 | (5) |
|
1.4.1 Nonlinear dispersion curves |
|
|
20 | (2) |
|
1.4.2 Optical bistability |
|
|
22 | (3) |
|
1.5 Modulation instability |
|
|
25 | (5) |
|
1.5.1 Linear stability analysis |
|
|
25 | (2) |
|
1.5.2 Effective NLS equation |
|
|
27 | (2) |
|
1.5.3 Experimental results |
|
|
29 | (1) |
|
1.6 Nonlinear pulse propagation |
|
|
30 | (10) |
|
|
30 | (1) |
|
1.6.2 Relation to NLS solitons |
|
|
31 | (1) |
|
1.6.3 Experiments on Bragg solitons |
|
|
32 | (2) |
|
1.6.4 Nonlinear switching |
|
|
34 | (4) |
|
1.6.5 Effects of birefringence |
|
|
38 | (2) |
|
1.7 Related periodic structures |
|
|
40 | (17) |
|
1.7.1 Long-period gratings |
|
|
40 | (3) |
|
1.7.2 Nonuniform Bragg gratings |
|
|
43 | (4) |
|
1.7.3 Transient and dynamic gratings |
|
|
47 | (3) |
|
|
50 | (1) |
|
|
51 | (6) |
|
Chapter 2 Directional couplers |
|
|
57 | (52) |
|
2.1 Coupler characteristics |
|
|
57 | (8) |
|
2.1.1 Coupled-mode equations |
|
|
58 | (2) |
|
|
60 | (3) |
|
2.1.3 Linear pulse switching |
|
|
63 | (2) |
|
|
65 | (9) |
|
|
65 | (2) |
|
2.2.2 Experimental results |
|
|
67 | (2) |
|
2.2.3 Nonlinear supermodes |
|
|
69 | (2) |
|
2.2.4 Modulation instability |
|
|
71 | (3) |
|
2.3 Ultrashort pulse propagation |
|
|
74 | (11) |
|
2.3.1 Nonlinear switching of optical pulses |
|
|
74 | (2) |
|
2.3.2 Variational approach |
|
|
76 | (4) |
|
2.3.3 Coupler-paired solitons |
|
|
80 | (2) |
|
2.3.4 Higher-order effects |
|
|
82 | (3) |
|
2.4 Other types of couplers |
|
|
85 | (8) |
|
2.4.1 Asymmetric couplers |
|
|
85 | (3) |
|
|
88 | (2) |
|
2.4.3 Grating-assisted couplers |
|
|
90 | (2) |
|
2.4.4 Birefringent couplers |
|
|
92 | (1) |
|
2.5 Multicore fiber couplers |
|
|
93 | (16) |
|
2.5.1 Dual-core photonic crystal fibers |
|
|
94 | (2) |
|
|
96 | (7) |
|
|
103 | (1) |
|
|
104 | (5) |
|
Chapter 3 Fiber interferometers |
|
|
109 | (34) |
|
3.1 Fabry-Perot and ring resonators |
|
|
109 | (11) |
|
3.1.1 Transmission resonances |
|
|
110 | (2) |
|
3.1.2 Optical bistability |
|
|
112 | (2) |
|
3.1.3 Nonlinear dynamics and chaos |
|
|
114 | (1) |
|
3.1.4 Modulation instability |
|
|
115 | (2) |
|
3.1.5 Cavity solitons and their applications |
|
|
117 | (3) |
|
3.2 Sagnac interferometers |
|
|
120 | (11) |
|
3.2.1 Nonlinear transmission |
|
|
121 | (1) |
|
3.2.2 Nonlinear switching |
|
|
122 | (4) |
|
|
126 | (5) |
|
3.3 Mach-Zehnder interferometers |
|
|
131 | (4) |
|
3.3.1 Nonlinear characteristics |
|
|
132 | (2) |
|
|
134 | (1) |
|
3.4 Michelson interferometers |
|
|
135 | (8) |
|
|
136 | (1) |
|
|
137 | (6) |
|
Chapter 4 Fiber amplifiers |
|
|
143 | (50) |
|
|
143 | (6) |
|
4.1.1 Pumping and gain coefficient |
|
|
144 | (1) |
|
4.1.2 Amplifier gain and bandwidth |
|
|
145 | (2) |
|
|
147 | (2) |
|
4.2 Erbium-doped fiber amplifiers |
|
|
149 | (7) |
|
|
150 | (2) |
|
|
152 | (2) |
|
|
154 | (2) |
|
4.3 Dispersive and nonlinear effects |
|
|
156 | (3) |
|
4.3.1 Maxwell-Bloch equations |
|
|
156 | (1) |
|
4.3.2 Ginzburg-Landau equation |
|
|
157 | (2) |
|
4.4 Modulation instability |
|
|
159 | (5) |
|
4.4.1 Distributed amplification |
|
|
159 | (2) |
|
4.4.2 Periodic lumped amplification |
|
|
161 | (2) |
|
4.4.3 Noise amplification |
|
|
163 | (1) |
|
|
164 | (6) |
|
4.5.1 Properties of autosolitons |
|
|
165 | (3) |
|
4.5.2 Maxwell-Bloch solitons |
|
|
168 | (2) |
|
|
170 | (13) |
|
4.6.1 Anomalous-dispersion regime |
|
|
171 | (1) |
|
4.6.2 Normal-dispersion regime |
|
|
172 | (5) |
|
4.6.3 Higher-order effects |
|
|
177 | (6) |
|
4.7 Fiber-optic Raman amplifiers |
|
|
183 | (10) |
|
4.7.1 Pulse amplification through Raman gain |
|
|
183 | (2) |
|
4.7.2 Self-similar evolution and similariton formation |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
188 | (5) |
|
|
193 | (62) |
|
|
193 | (6) |
|
5.1.1 Pumping and optical gain |
|
|
194 | (1) |
|
|
195 | (2) |
|
5.1.3 Laser threshold and output power |
|
|
197 | (2) |
|
|
199 | (12) |
|
5.2.1 Nd-doped fiber lasers |
|
|
199 | (3) |
|
5.2.2 Yb-doped fiber lasers |
|
|
202 | (3) |
|
5.2.3 Erbium-doped fiber lasers |
|
|
205 | (2) |
|
|
207 | (3) |
|
5.2.5 Self-pulsing and chaos |
|
|
210 | (1) |
|
5.3 Short-pulse fiber lasers |
|
|
211 | (13) |
|
5.3.1 Q-switched fiber lasers |
|
|
211 | (4) |
|
5.3.2 Physics of mode locking |
|
|
215 | (1) |
|
5.3.3 Active mode locking |
|
|
216 | (4) |
|
5.3.4 Harmonic mode locking |
|
|
220 | (4) |
|
|
224 | (14) |
|
5.4.1 Saturable absorbers |
|
|
224 | (3) |
|
5.4.2 Nonlinear fiber-loop mirrors |
|
|
227 | (2) |
|
5.4.3 Nonlinear polarization rotation |
|
|
229 | (3) |
|
5.4.4 Hybrid mode locking |
|
|
232 | (2) |
|
5.4.5 Other mode4ocking techniques |
|
|
234 | (4) |
|
5.5 Role of fiber nonlinearity and dispersion |
|
|
238 | (17) |
|
5.5.1 Saturable-absorber mode locking |
|
|
238 | (2) |
|
5.5.2 Additive-pulse mode locking |
|
|
240 | (1) |
|
5.5.3 Spectral sidebands and pulse width |
|
|
241 | (2) |
|
5.5.4 Phase locking and soliton collisions |
|
|
243 | (2) |
|
5.5.5 Polarization effects |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
248 | (7) |
|
Chapter 6 Pulse compression |
|
|
255 | (54) |
|
|
255 | (2) |
|
6.2 Grating-fiber compressors |
|
|
257 | (12) |
|
|
258 | (2) |
|
6.2.2 Optimum compressor design |
|
|
260 | (4) |
|
6.2.3 Practical limitations |
|
|
264 | (1) |
|
6.2.4 Experimental results |
|
|
265 | (4) |
|
6.3 Soliton-effect compressors |
|
|
269 | (7) |
|
6.3.1 Compressor optimization |
|
|
269 | (2) |
|
6.3.2 Experimental results |
|
|
271 | (2) |
|
6.3.3 Higher-order nonlinear effects |
|
|
273 | (3) |
|
|
276 | (5) |
|
6.4.1 Gratings as a compact dispersive element |
|
|
276 | (2) |
|
6.4.2 Grating-induced nonlinear chirp |
|
|
278 | (1) |
|
6.4.3 Bragg-soliton compression |
|
|
279 | (2) |
|
6.5 Chirped-pulse amplification |
|
|
281 | (5) |
|
6.5.1 Chirped fiber gratings |
|
|
282 | (2) |
|
6.5.2 Photonic crystal fibers |
|
|
284 | (2) |
|
6.6 Dispersion-managed fibers |
|
|
286 | (7) |
|
6.6.1 Dispersion-decreasing fibers |
|
|
287 | (3) |
|
6.6.2 Comb-like dispersion profiles |
|
|
290 | (3) |
|
6.7 Other compression techniques |
|
|
293 | (16) |
|
6.7.1 Cross-phase modulation |
|
|
294 | (3) |
|
6.7.2 Gain switching in semiconductor lasers |
|
|
297 | (1) |
|
|
298 | (3) |
|
6.7.4 Fiber-loop mirrors and other devices |
|
|
301 | (2) |
|
|
303 | (1) |
|
|
304 | (5) |
|
Chapter 7 Fiber-optic communications |
|
|
309 | (60) |
|
|
309 | (5) |
|
|
310 | (2) |
|
7.1.2 Dispersion management |
|
|
312 | (2) |
|
7.2 Impact of fiber nonlinearities |
|
|
314 | (17) |
|
7.2.1 Stimulated Brillouin scattering |
|
|
314 | (3) |
|
7.2.2 Stimulated Raman scattering |
|
|
317 | (3) |
|
7.2.3 Self-phase modulation |
|
|
320 | (3) |
|
7.2.4 Cross-phase modulation |
|
|
323 | (4) |
|
|
327 | (4) |
|
7.3 Solitons in optical fibers |
|
|
331 | (13) |
|
7.3.1 Properties of optical solitons |
|
|
331 | (3) |
|
7.3.2 Loss-managed solitons |
|
|
334 | (3) |
|
7.3.3 Dispersion-managed solitons |
|
|
337 | (3) |
|
|
340 | (4) |
|
7.4 Pseudolinear lightwave systems |
|
|
344 | (5) |
|
7.4.1 Intrachannel nonlinear effects |
|
|
344 | (2) |
|
|
346 | (2) |
|
|
348 | (1) |
|
|
349 | (7) |
|
7.5.1 Symbols, baud, and modulation formats |
|
|
349 | (2) |
|
7.5.2 Heterodyne detection |
|
|
351 | (2) |
|
7.5.3 Impact of nonlinear effects |
|
|
353 | (3) |
|
7.6 Space-division multiplexing |
|
|
356 | (13) |
|
|
356 | (4) |
|
|
360 | (3) |
|
|
363 | (1) |
|
|
364 | (5) |
|
Chapter 8 Optical signal processing |
|
|
369 | (50) |
|
8.1 Wavelength conversion |
|
|
369 | (11) |
|
8.1.1 XPM-based wavelength converters |
|
|
369 | (6) |
|
8.1.2 FWM-based wavelength converters |
|
|
375 | (5) |
|
8.2 Ultrafast optical switching |
|
|
380 | (8) |
|
8.2.1 XPM-based Sagnac-loop switches |
|
|
381 | (2) |
|
8.2.2 Polarization-discriminating switches |
|
|
383 | (3) |
|
8.2.3 FWM-based ultrafast switches |
|
|
386 | (2) |
|
8.3 Applications of time-domain switching |
|
|
388 | (10) |
|
8.3.1 Channel demultiplexing |
|
|
389 | (5) |
|
8.3.2 Data-format conversion |
|
|
394 | (2) |
|
8.3.3 All-optical sampling |
|
|
396 | (2) |
|
|
398 | (21) |
|
8.4.1 SPM- and XPM-based regenerators |
|
|
398 | (5) |
|
8.4.2 FWM-based regenerators |
|
|
403 | (2) |
|
8.4.3 Phase-preserving regenerators |
|
|
405 | (4) |
|
8.4.4 Multichannel optical regenerators |
|
|
409 | (1) |
|
8.4.5 Optical 3R regenerators |
|
|
410 | (3) |
|
|
413 | (1) |
|
|
413 | (6) |
|
Chapter 9 Highly nonlinear fibers |
|
|
419 | (62) |
|
9.1 Microstructured fibers |
|
|
419 | (7) |
|
9.1.1 Design and fabrication |
|
|
419 | (2) |
|
9.1.2 Nonlinear and dispersive properties |
|
|
421 | (5) |
|
9.2 Wavelength shifting and tuning |
|
|
426 | (12) |
|
9.2.1 Raman-induced frequency shifts |
|
|
426 | (8) |
|
|
434 | (4) |
|
9.3 Supercontinuum generation |
|
|
438 | (18) |
|
9.3.1 Multichannel telecommunication sources |
|
|
439 | (1) |
|
9.3.2 Nonlinear microscopy and spectroscopy |
|
|
440 | (4) |
|
9.3.3 Optical coherence tomography |
|
|
444 | (5) |
|
9.3.4 Optical frequency metrology |
|
|
449 | (7) |
|
|
456 | (7) |
|
9.4.1 Fiber-based ring cavities |
|
|
456 | (4) |
|
9.4.2 Properties of cavity solitons |
|
|
460 | (3) |
|
9.5 Photonic bandgap fibers |
|
|
463 | (18) |
|
9.5.1 Properties of hollow-core PCFs |
|
|
464 | (3) |
|
9.5.2 Applications of air-core PCFs |
|
|
467 | (2) |
|
9.5.3 Fluid-filled hollow-core PCFs |
|
|
469 | (5) |
|
|
474 | (1) |
|
|
475 | (6) |
|
Chapter 10 Quantum applications |
|
|
481 | (52) |
|
10.1 Quantum theory of pulse propagation |
|
|
481 | (8) |
|
10.1.1 Quantum nonlinear Schrodinger equation |
|
|
482 | (1) |
|
10.1.2 Quantum theory of self-phase modulation |
|
|
483 | (2) |
|
10.1.3 Generalized NLS equation |
|
|
485 | (2) |
|
|
487 | (2) |
|
10.2 Squeezing of quantum noise |
|
|
489 | (14) |
|
10.2.1 Physics behind quadrature squeezing |
|
|
489 | (1) |
|
10.2.2 FWM-induced quadrature squeezing |
|
|
490 | (2) |
|
10.2.3 SPM-induced quadrature squeezing |
|
|
492 | (4) |
|
10.2.4 SPM-induced amplitude squeezing |
|
|
496 | (5) |
|
10.2.5 Polarization squeezing |
|
|
501 | (2) |
|
10.3 Quantum nondemolition schemes |
|
|
503 | (4) |
|
10.3.1 QND measurements through soliton collisions |
|
|
503 | (2) |
|
10.3.2 QND measurements through spectral filtering |
|
|
505 | (2) |
|
|
507 | (9) |
|
10.4.1 Single-photon sources |
|
|
507 | (2) |
|
10.4.2 Photon-pair sources |
|
|
509 | (3) |
|
10.4.3 Impact of spontaneous Raman scattering |
|
|
512 | (2) |
|
10.4.4 Heralded single-photon sources |
|
|
514 | (2) |
|
10.5 Quantum entanglement |
|
|
516 | (9) |
|
10.5.1 Polarization entanglement |
|
|
517 | (4) |
|
10.5.2 Time-bin entanglement |
|
|
521 | (1) |
|
10.5.3 Continuous-variable entanglement |
|
|
522 | (3) |
|
10.6 Applications of quantum states |
|
|
525 | (8) |
|
10.6.1 Quantum cryptography |
|
|
526 | (1) |
|
|
527 | (1) |
|
|
528 | (1) |
|
|
529 | (4) |
Appendix A Acronyms |
|
533 | (2) |
Index |
|
535 | |