Muutke küpsiste eelistusi

E-raamat: Applied Metrology for Manufacturing Engineering

(CEGEP de l'Outaouais, Canada)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Mar-2013
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118622568
  • Formaat - PDF+DRM
  • Hind: 364,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Mar-2013
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118622568

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Applied Metrology for Manufacturing Engineering, stands out from traditional works due to its educational aspect. Illustrated by tutorials and laboratory models, it is accessible to users of non-specialists in the fields of design and manufacturing. Chapters can be viewed independently of each other. This book focuses on technical geometric and dimensional tolerances as well as mechanical testing and quality control. It also provides references and solved examples to help professionals and teachers to adapt their models to specific cases. It reflects recent developments in ISO and GPS standards and focuses on training that goes hand in hand with the progress of practical work and workshops dealing with measurement and dimensioning.
Chapter 1 Fundamentals of Error Analysis and their Uncertainties in Dimensional Metrology Applied to Science and Technology
1(84)
1.1 Introduction to uncertainties in dimensional metrology
1(3)
1.2 Definition of standards
4(5)
1.3 Definition of errors and uncertainties in dimensional metrology
9(6)
1.3.1 What is the difference between error and uncertainty?
10(1)
1.3.2 Why make a calculation of errors' uncertainty?
11(1)
1.3.3 Reminder of basic errors and uncertainties
11(2)
1.3.4 Properties of uncertainty propagation
13(1)
1.3.5 Reminder of random basic variables and their functions
14(1)
1.3.6 Properties of random variables of common functions
15(1)
1.4 Errors and their impact on the calculation of uncertainties
15(20)
1.4.1 Accidental or fortuitous errors
15(1)
1.4.2 Systematic errors
16(2)
1.4.3 Errors due to apparatus
18(1)
1.4.4 Errors due to the operator
18(1)
1.4.5 Errors due to temperature differences
18(3)
1.4.6 Random errors
21(14)
1.5 Applications based on errors in dimensional metrology
35(7)
1.5.1 Absolute error |δ| = Ea
35(1)
1.5.2 Relative error δ = Er
35(1)
1.5.3 Systematic error
36(1)
1.5.4 Accidental error (fortuitous error)
36(1)
1.5.5 Expansion effect on a bore/shaft assembly
36(6)
1.6 Correction of possible measurement errors
42(6)
1.6.1 Overall error and uncertainty
45(1)
1.6.2 Uncertainty due to calibration methods
46(1)
1.6.3 Capability of measuring instruments
47(1)
1.7 Estimation of uncertainties of measurement errors in metrology
48(5)
1.7.1 Definitions of simplified equations of uncertainty measurements
48(1)
1.7.2 Issue of mathematical statistics evaluation of uncertainties in dimensional metrology
49(2)
1.7.3 Uncertainty range, coverage factor k and range of relative uncertainty
51(2)
1.8 Approaches for determining type A and B uncertainties according to the GUM
53(16)
1.8.1 Introduction
53(1)
1.8.2 Properties
54(3)
1.8.3 Brief description of type-A uncertainty evaluation method
57(2)
1.8.4 Type-B uncertainty methods
59(10)
1.9 Principle of uncertainty calculation: types A and B
69(13)
1.9.1 Error on the repeated measure: calculation of compound standard uncertainty
71(3)
1.9.2 Applications on the laboratory calculations of uncertainties
74(1)
1.9.3 Simplified models for the calculations of measurement uncertainties
75(4)
1.9.4 Laboratory model of dimensional metrology
79(1)
1.9.5 Measurement uncertainty evaluation discussion
79(2)
1.9.6 Contribution of the GUM in dimensional metrology
81(1)
1.10 Summary
82(1)
1.11 Bibliography
83(2)
Chapter 2 Fundamentals of Dimensional and Geometrical Tolerances According to ISO, CSA (Canada), and ANSI (USA)
85(78)
2.1 Introduction to geometrical products specification
85(4)
2.2 Dimensional tolerances and adjustments
89(8)
2.2.1 Adjustments with clearance: ø80 H8/f7
91(1)
2.2.2 Adjustments with uncertain clearance: ø80 H7/k6
91(1)
2.2.3 Adjustments with clamping or interference
91(2)
2.2.4 Approach for the calculation of an adjustment with clearance
93(1)
2.2.5 Dimensioning according to ANSI and CSA
94(2)
2.2.6 Definition of geometrical form constraints
96(1)
2.3 International vocabulary of metrology
97(6)
2.3.1 Local nominal dimensions according to ISO/DIS 14660-1996
97(1)
2.3.2 Definition of the axis extracted from a cylinder or a cone
98(1)
2.3.3 Definition of the local size extracted from a cylinder
99(1)
2.3.4 Definition of local size extracted from two parallel surfaces
100(1)
2.3.5 Notion of simulated element and associated element
101(2)
2.4 GPS standard covering ISO/TR1463 8-1995
103(33)
2.4.1 Principle of independency according to ISO 8015-1985 (classic case)
103(1)
2.4.2 Envelope requirement according to ISO 8015
104(2)
2.4.3 Maximum material principle according to ISO 2692-1988 (classic case)
106(2)
2.4.4 Form tolerances
108(1)
2.4.5 Flatness tolerances
109(1)
2.4.6 Straightness tolerance
109(2)
2.4.7 Roundness
111(1)
2.4.8 Cylindricity
112(1)
2.4.9 Orientation tolerances
113(1)
2.4.10 Parallelism (straight line/straight line)
114(2)
2.4.11 Parallelism plane/plane (plane/straight line) on CMM
116(2)
2.4.12 A workshop exercise on dimensional metrology
118(1)
2.4.13 Angularity
119(1)
2.4.14 Positioning tolerances
119(8)
2.4.15 Tolerance of single radial flap (radial runout)
127(1)
2.4.16 Tolerance of single axial flap (axial runout)
127(3)
2.4.17 Zone of tolerance applied to a restricted portion of the piece (as in // and in)
130(1)
2.4.18 Projected tolerance zone according to ISO 10578 (classic case)
131(5)
2.5 Conicity according to ISO 3040-1990
136(3)
2.5.1 Conicity calculation: slope, tan(α), large and small diameter
138(1)
2.6 Linear dimensional tolerances
139(4)
2.6.1 Consequence: "size" tolerancing
141(1)
2.6.2 Consequence: independency with regard to the form
142(1)
2.7 Positioning a group of elements
143(2)
2.8 GPS standards according to the report CR ISO/TR14638 of 1996
145(2)
2.9 Rational dimensioning for a controlled metrology: indices of capability and performance indices statistical process specification
147(12)
2.10 Summary and discussion
159(2)
2.11 Bibliography
161(2)
Chapter 3 Measurement and Controls Using Linear and Angular Standards
163(74)
3.1 Key dimensional metrology standards
163(5)
3.1.1 Time and frequency standards
164(1)
3.1.2 Force and pressure standards
165(1)
3.1.3 Electrical standards
165(1)
3.1.4 Temperature standards
166(1)
3.1.5 Photometric standards
166(1)
3.1.6 Measurement, comparison, and control
166(2)
3.2 Meter, time, and mass
168(2)
3.2.1 The meter
168(1)
3.2.2 Time
169(1)
3.2.3 Mass
170(1)
3.3 Deformations and mechanical causes of errors
170(10)
3.3.1 Quantitative assessment of gauge blocks
170(2)
3.3.2 Assessment of cylindrical rod and ball gauges (spheres). Local crashing of cylindrical rods K1
172(1)
3.3.3 Recommendations for correct block staking
173(1)
3.3.4 Punctual contact (spherical buttons, beads, and thread flanks of a thread buffer) K2°
174(1)
3.3.5 Total flattening of cylindrical gauges (kp)
175(1)
3.3.6 Total flattening of balls (spheres)Ksph
176(1)
3.3.7 Measurement and precision with micrometer
177(3)
3.4 Marble, V-blocks, gauge blocks, and dial gauges
180(5)
3.4.1 Control of flat surfaces on marble
180(1)
3.4.2 Measurement by comparison of small marble surfaces
180(2)
3.4.3 V-shaped block
182(1)
3.4.4 Parallel blocks
183(2)
3.5 Dial gauge
185(14)
3.5.1 Mechanical dial gauges with inside and outside contacts
188(1)
3.5.2 Sizes of fixed dimensions, or Max-Min
189(1)
3.5.3 Bore gauges
189(2)
3.5.4 Bore gauges
191(1)
3.5.5 Plain rings
191(1)
3.5.6 Spindle bores
192(1)
3.5.7 Inside gauges (micrometer)
193(2)
3.5.8 Depth gauges
195(1)
3.5.9 Telescopic bore gauges
196(3)
3.6 Example of a laboratory model
199(1)
3.6.1 Table of experimental measurements
199(1)
3.7 Precision height
200(5)
3.7.1 Directions for use of height masters (or height gauges)
201(1)
3.7.2 Adjustable parallel gauge blocks and holding accessories
201(2)
3.7.3 Example of a laboratory model
203(1)
3.7.4 Table of experimental measurements
203(1)
3.7.5 Precision height gauge check master
204(1)
3.7.6 Caliper gauge control
205(1)
3.8 The universal protractor vernier
205(6)
3.8.1 Direct angle measurement
207(1)
3.8.2 Indirect angular measurement
208(1)
3.8.3 Vernier height gauge
208(1)
3.8.4 Gear tooth vernier caliper
209(2)
3.9 Vernier calipers
211(5)
3.9.1 Various measurements of a dimension using a caliper
213(1)
3.9.2 Possible errors when using a caliper
214(2)
3.10 Micrometer or Palmer
216(18)
3.10.1 Principle of micrometric screw
217(1)
3.10.2 Manipulations to perform a measurement with a Palmer
217(3)
3.10.3 Adjusting micrometers
220(1)
3.10.4 Control of parallelism and flatness of the micrometer's measuring surfaces using optical glass
221(5)
3.10.5 Measurement of screw threads by three-wire method
226(2)
3.10.6 Ruler and gauges for the control of screw threads
228(1)
3.10.7 Micrometer with fine point
229(1)
3.10.8 Disc micrometers to measure shoulder distances
230(1)
3.10.9 Outside micrometer caliper type
231(3)
3.11 Summary
234(1)
3.12 Bibliography
235(2)
Chapter 4 Surface Control
237(72)
4.1 Control and measurement of angles
237(4)
4.1.1 Angles defects
239(2)
4.2 Surfaces of revolution
241(17)
4.2.1 Fundamentals of the analysis of conical surfaces control
243(2)
4.2.2 Control by comparison to a standard
245(1)
4.2.3 Using the buffer and the cone-shaped ring
246(1)
4.2.4 Measuring angles with gauges and balls
246(7)
4.2.5 Principle of measurement called "sine"
253(5)
4.2 Metric thread (M) measurement on gauge
258(3)
4.3.1 Laboratory control of the conicity with balls and gauges
259(2)
4.4 Controls of cones on machine-tools
261(3)
4.4.1 Method of swivel slide
261(2)
4.4.2 Method of lateral displacement of the tailstock of a lathe
263(1)
4.5 Control of flat surfaces
264(6)
4.5.1 Properties of a dihedron
265(1)
4.5.2 Control of large flat surfaces
266(4)
4.6 Control of cylindrical surfaces (of revolution)
270(11)
4.6.1 Cylindrical surface
270(1)
4.6.2 Associated definitions
270(1)
4.6.3 Cylindricity defects
271(1)
4.6.4 Control of a cylinder on three contact tips on a V-block
272(8)
4.6.5 Practical control of the straightness of the generatrix of a cylinder
280(1)
4.6.6 Control of the perpendicularity of the generatrix and the drive circle
280(1)
4.7 Control of surfaces of revolution with spherical forms
281(9)
4.7.1 Description and functioning of a spherometer
282(2)
4.7.2 Laboratory (workshop) simulated on the appropriate use of spherometer
284(1)
4.7.3 Control and measurement with spherometer (second approach)
285(2)
4.7.4 Generating a spherical surface
287(3)
4.8 Control of the relative positions of surfaces
290(4)
4.8.1 Control of parallelism for surfaces or edges
291(1)
4.8.2 Control of parallelism for two dihedral edges
291(1)
4.8.3 Control of the angular position of surfaces, distance between the axis of a bore and the plane
292(1)
4.8.4 Control of distance between the sphere center and the plane
293(1)
4.8.5 Control of the position of the edge of a dihedron
294(1)
4.9 Methods of dimensional measurement
294(14)
4.9.1 Direct method (calibration curve)
294(1)
4.9.2 Indirect method (by comparison or differential)
294(1)
4.9.3 Indirect method known under the term "at zero"
295(1)
4.9.4 Measurement of flatness defect
296(1)
4.9.5 Method for measuring flatness deviation
296(3)
4.9.6 Operating procedure for flatness deviation measurement
299(3)
4.9.7 Relative position of measuring instruments and the workpiece
302(1)
4.9.8 Control of the perpendicularity of a line to a plane
303(2)
4.9.9 Relative position of measuring instruments and the workpiece
305(1)
4.9.10 Other controls of dimensions in relative positions
305(1)
4.9.11 Direct measurement of an intrinsic dimension using micrometer
306(1)
4.9.12 Summary on relative positions
307(1)
4.10 Bibliography
308(1)
Chapter 5 Opto-Mechanical Metrology
309(32)
5.1 Introduction to measurement by optical methods
309(13)
5.1.1 Description of profile projector (type Mitutoyo PH-350H)
309(3)
5.1.2 Presentation of the main operating functions of GEOCHECK
312(1)
5.1.3 Selecting the point of origin (preset operation, zero reset)
313(2)
5.1.4 The main functions of optical comparator
315(3)
5.1.5 Metrology laboratories on profile projector
318(3)
5.1.6 Plates measurement standards for profile projector
321(1)
5.2 Principle of interferential metrology (example: prism spectroscope)
322(3)
5.2.1 Function of two sine-waves interference
323(1)
5.2.2 Statistical description
324(1)
5.3 Flatness measurement by optical planes
325(1)
5.4 Principle of interferoscope
326(4)
5.5 Control of parallelism (case of parallel gauge-blocks)
330(9)
5.5.1 Numerical example of laboratory
336(3)
5.6 Conclusion
339(1)
5.7 Bibliography
340(1)
Chapter 6 Control of Surface States
341(54)
6.1 Introduction to surface states control for solid materials
341(7)
6.1.1 Terminology and definition of surface states criteria
343(2)
6.1.2 Surface states (texture) and sampling lengths
345(1)
6.1.3 Waviness parameters
346(2)
6.2 Instruments for measuring surface state
348(1)
6.2.1 Selecting cutoff for roughness measurements
348(1)
6.3 Symbols used in engineering drawings to describe the appropriate surface state according to ANSI/ASME Y14. 36M-1996
349(13)
6.3.1 Surface characteristics in a drawing using CAD--CAO software
351(4)
6.3.2 Expressions of the terms of surface roughness
355(3)
6.3.3 Description of the main surface states
358(4)
6.4 Presentation of Mitutoyo Surftest 211
362(8)
6.4.1 Components of rugosimeter 211
362(3)
6.4.2 Calibration of Mitutoyo rugosimeter 211
365(1)
6.4.3 Measurement
365(1)
6.4.4 Practical example on the application of Surftest 211
365(2)
6.4.5 Portable rugosimeter SJ-400 of Mitutoyo
367(3)
6.5 The main normalized parameters of surface states used in the industry, their formulas and definitions
370(13)
6.5.1 Waviness parameters
372(11)
6.6 Example on the control of the roughness of a plate grade 6061
383(8)
6.6.1 Questionnaire and laboratory approach
385(1)
6.6.2 Table of calibrated measurement results in [ micrometer] and [ microinch]
386(1)
6.6.3 Plotting using MathCAD Software
386(2)
6.6.4 Plotting with the aid of MathCAD
388(2)
6.6.5 Graphical results of arithmetic means Ra
390(1)
6.6.6 Discussions
390(1)
6.7 Calculations of the overall uncertainty in the GUM method compared to the Monte Carlo method using the software GUMic
391(1)
6.8 Summary
392(1)
6.9 Bibliography
393(2)
Chapter 7 Computer-Aided Metrology-CAM
395(58)
7.1 Coordinate-measuring machine (CMM)
395(4)
7.1.1 Morphology of the CMM
395(2)
7.1.2 The CMM and its environment
397(1)
7.1.3 Advantages of CMM in metrology
398(1)
7.2 Commonly-used geometric models in dimensional metrology
399(12)
7.2.1 Constructive solid geometry models
400(1)
7.2.2 Boundary representation models (B-REP)
401(1)
7.2.3 Hybrid models CSG/B-REP (solid + surfaces)
401(1)
7.2.4 NURBS (Non-Uniform Rational Beta-Splines)
402(4)
7.2.5 TTRS (Technologically and Topologically Related Surfaces) models
406(3)
7.2.6 Real forms, real geometric elements, real geometrical surfaces
409(2)
7.3 Nominal geometric elements
411(4)
7.3.1 Modeling the ideal geometric form of a workpiece
411(1)
7.3.2 Model of real geometric elements, reference surface (SR)
412(1)
7.3.3 Substitution surfaces models
412(3)
7.4 Description of styli and types of probing
415(5)
7.4.1 Styli with ruby ball
415(1)
7.4.2 Hemispherical-ended styli
416(1)
7.4.3 Sharp styli or styli with small radius
416(1)
7.4.4 Disc styli (or simply discs)
416(1)
7.4.5 Cylindrical stylus
417(1)
7.4.6 Accessories and styli extensions
417(3)
7.5 Software and computers supporting the CMM
420(3)
7.5.1 Geometric control
420(1)
7.5.2 Surface control
420(1)
7.5.3 Coordinates systems and probes calibration
421(2)
7.6 Starting a B504B-Mitutoyo CMM
423(4)
7.6.1 Number of probing points
425(1)
7.6.2 Key measuring functions of the Mitutoyo B504B CMM
425(2)
7.7 Measurements on CMM using the Cosmos software
427(16)
7.7.1 Case of circle-to-circle distance
431(10)
7.7.2 STATPAK-Win of Cosmos, Mitutoyo
441(2)
7.8 Examples of applications using CMM
443(7)
7.8.1 Compiling the technical file
449(1)
7.8.2 Constitution of the CMM laboratory report under Cosmos (or other)
450(1)
7.9
Chapter summary and future extensions of CMMs
450(2)
7.10 Bibliography
452(1)
Chapter 8 Control of Assembly and Transmission Elements
453(78)
8.1 Introduction to the control of components for temporary assembly and elements for power transmission: threads, gears, and splines
453(6)
8.1.1 Method of obtaining threads and tapping in mechanical manufacturing
453(2)
8.1.2 General description of thread dimensioning
455(2)
8.1.3 Designation of threads and tapped holes for blind holes
457(2)
8.2 Helical surface for screw threads
459(2)
8.2.1 Technological processes for tapping and its control (Go -- Not Go)
459(2)
8.2.2 Tapping (by hand) with tap wrench and set of taps
461(1)
8.3 The main threads in the industry
461(17)
8.3.1 ISO Threads
462(5)
8.3.2 American Standard pipe threads
467(1)
8.3.3 The Whitworth thread
468(1)
8.3.4 BRIGGS tapered threads; cone 6.25%
469(1)
8.3.5 American Standard thread, NC and NF series
470(1)
8.3.6 Pipe threads called "GAS"
470(1)
8.3.7 Main threads implemented in Canada
471(7)
8.4 Principles of threads control
478(9)
8.4.1 Defects of the helical surface
479(1)
8.4.2 Control, without measurement, of threads
480(6)
8.4.3 Control of a thread pitch using ruler and gauge
486(1)
8.4.4 Checking the straightness of tapping tools by squaring
486(1)
8.5 Screws resistance and quality classes
487(4)
8.5.1 Minimum torques for screws with diameters of 1 to 10 mm
487(1)
8.5.2 Example of calculations of efforts on threads (North American concept)
488(3)
8.6 Control of screw thread by mechanical and optical comparison
491(3)
8.6.1 Laboratory example on threads control
491(3)
8.7 Introduction to gear control
494(24)
8.7.1 Parallel spur gears
495(9)
8.7.2 Metrological control of the main types of gears
504(1)
8.7.3 Spur gears with helical teeth
505(1)
8.7.4 Helical gears with parallel axes
506(1)
8.7.5 Parallel spur gears with helical teeth
506(1)
8.7.6 Bevel or concurrent gears
507(3)
8.7.7 Worm gears
510(1)
8.7.8 Racks
511(2)
8.7.9 Control of gears with a vernier calipers
513(2)
8.7.10 Chordal thickness measurement
515(1)
8.7.11 Over wire measurement
516(1)
8.7.12 Measuring thickness of rack teeth
517(1)
8.8 Introduction to spline control
518(11)
8.8.1 Dimensional control of splines
520(1)
8.8.2 Control of the geometric correction of splines
520(1)
8.8.3 Woodruff key -- standardized ANSI B17. 2-1967 (R1998)
521(1)
8.8.4 Control of key-seats
522(1)
8.8.5 Calculating the depth of the housing (groove) and the distance from the top of the key
522(7)
8.9 Summary
529(1)
8.10 Bibliography
530(1)
Chapter 9 Control of Materials Hardness Testing
531(58)
9.1 Introduction to non-destructive testing
531(6)
9.1.1 Measurements of hardness by indentation
533(1)
9.1.2 Presentation of the main hardness tests
534(3)
9.2 Principle and description of the Rockwell hardness
537(8)
9.2.1 Comparison of indentation methods (Table 9.4)
539(1)
9.2.2 Typical applications of Rockwell scales
540(1)
9.2.3 Rockwell superficial hardness test
541(1)
9.2.4 Rockwell hardness tests of plastics
542(1)
9.2.5 Comparison between Shore and Rockwell hardness ball testing
542(2)
9.2.6 Overall description of the Rockwell hardness testing machine
544(1)
9.3 Brinell hardness test
545(5)
9.3.1 Applied load and diameter of the ball
547(1)
9.3.2 Thickness of the tested metal
548(1)
9.3.3 Meyer hardness test (named after Rajakovico and Meyer)
548(1)
9.3.4 Operating procedure for Brinell hardness test
549(1)
9.4 Principle of the Vickers hardness test
550(3)
9.5 Knoop hardness (HK)
553(2)
9.6 Barcol hardness
555(1)
9.7 Rebound hardness test by Shore test (scleroscope)
556(2)
9.7.1 Comparison of the indenters for the Rockwell and Shore tests
558(1)
9.8 Mohs hardness for minerals
558(2)
9.8.1 Mohs scale of hardness minerals
560(1)
9.8.2 How should the hardness of a mineral be measured?
560(1)
9.9 IRHD rubber hardness tester
560(2)
9.9.1 Control of rubber and other elastomers by IRHD and Shore test
561(1)
9.10 Comparison of the three main hardness tests and a practical approach for hardness testing: Brinell HB, Rockwell HR, and Vickers HV
562(2)
9.11 Main mechanical properties of solid materials
564(11)
9.11.1 Flow testing
564(1)
9.11.2 Tensile testing of solid materials
564(3)
9.11.3 Impact test for steels
567(8)
9.12 Mechanical tests on plastic materials
575(3)
9.12.1 Tensile strength, strain, and modulus ASTM D638 (ISO 527)
575(1)
9.12.2 Flexural strength and modulus ASTM D 790 (ISO 178)
576(1)
9.12.3 Impact test
576(1)
9.12.4 Interpretation of resistance to impacts -ASTM compared to ISO
577(1)
9.12.5 Izod impact strength ASTM D 256 (TSO 180)
577(1)
9.13 Fatigue failure and dimensional metrology for the control of the dimensioning of materials assembled by welding
578(5)
9.13.1 Fatigue testing
578(1)
9.13.2 Tenacity
578(4)
9.13.3 General tolerances for welded structures according to ISO 13920
582(1)
9.14 Summary
583(4)
9.14.1 There is seriously no universal solution to conduct hardness tests
584(1)
9.14.2 Some criteria for choosing hardness testing apparatus
585(1)
9.14.3 Indentation reading mode
586(1)
9.14.4 The expected result
586(1)
9.15 Bibliography
587(2)
Chapter 10 Overall Summary
589(6)
Glossary
595(20)
Lexicon of terms frequently used in metrology
595(1)
Warning
596(17)
Bibliography
613(2)
Appendix 1 615(16)
Appendix 2 631(6)
Appendix 3 637(4)
Appendix 4 641(4)
Appendix 5 645(20)
Appendix 6 665(8)
Index 673
Ammar Grous, CEGEP de l'Outaouais, Quebec, Canada.