Muutke küpsiste eelistusi

E-raamat: Astronomical Spectroscopy: An Introduction To The Atomic And Molecular Physics Of Astronomical Spectroscopy (Third Edition)

(Univ College London, Uk)
  • Formaat: 284 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 17-Apr-2019
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786346964
  • Formaat - EPUB+DRM
  • Hind: 40,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 284 pages
  • Sari: Advanced Textbooks in Physics
  • Ilmumisaeg: 17-Apr-2019
  • Kirjastus: World Scientific Europe Ltd
  • Keel: eng
  • ISBN-13: 9781786346964

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

'The first two editions of this textbook have received well-deserved high acclaims, and this the third edition deserves no less. Its explanations of the whole gamut of atomic and molecular spectroscopy provide a solid grasp of the theory as well as how to understand such spectra in practice. It thus makes an ideal companion to books that start from the observational aspect of spectroscopy, whether in the lab or at the telescope This new edition of Tennysonâs book ought to be in the library of every astronomical department.'The Observatory Magazine'It closely follows the course given to third year UCL undergraduates, and the worked examples have surely been tested on students The last two chapters serve as an effective appendix on more specialised topics in atomic and molecular theory.'Contemporary PhysicsThe third edition of Astronomical Spectroscopy examines the physics necessary to understand and interpret astronomical spectra. It offers a step-by-step guide to the atomic and molecular physics involved in providing astronomical spectra starting from the relatively simple hydrogen atom and working its way to the spectroscopy of small molecules.Based on UCL course material, this book uses actual astronomical spectra to illustrate the theoretical aspects of the book to give the reader a feel for such spectra as well as an awareness of what information can be retrieved from them. It also provides comprehensive exercises, with answers given, to aid understanding.
Preface to the First Edition v
Preface to the Second Edition vii
Preface to the Third Edition ix
About the Author xi
1 Why Record Spectra of Astronomical Objects?
1(8)
1.1 A Historical Introduction
1(2)
1.2 What One Can Learn from Studying Spectra
3(6)
2 The Nature of Spectra
9(12)
2.1 Transitions
9(1)
2.2 Absorption and Emission
10(2)
2.3 Other Measures of Transition Probabilities
12(1)
2.4 Stimulated Emission
12(1)
2.5 Optical Depth
13(1)
2.6 Critical Density
14(1)
2.7 Wavelength or Frequency?
15(2)
2.8 The Electromagnetic Spectrum
17(4)
3 Atomic Hydrogen
21(36)
3.1 Overview
21(1)
3.2 The Schrodinger Equation of Hydrogen-Like Atoms
22(1)
3.3 Reduced Mass
22(1)
3.4 Atomic Units
23(1)
3.5 Wavefunctions for Hydrogen
24(1)
3.6 Energy Levels and Quantum Numbers
24(4)
3.7 H-Atom Discrete Spectra
28(6)
3.8 H-Atom Spectra in Different Locations
34(6)
3.8.1 Balmer series
34(4)
3.8.2 Lyman series
38(2)
3.8.3 Infrared lines
40(1)
3.9 H-Atom Continuum Spectra
40(3)
3.9.1 Processes
40(2)
3.9.2 H-atom emission in HII regions
42(1)
3.10 Radio Recombination Lines
43(1)
3.11 Radio Recombination Lines for Other Atoms
44(4)
3.12 Angular Momentum Coupling in the Hydrogen Atom
48(2)
3.13 The Fine Structure of Hydrogen
50(1)
3.14 Hyperfine Structure in the H Atom
51(2)
3.15 Allowed Transitions
53(1)
3.16 Hydrogen in Nebulae
54(3)
4 Complex Atoms
57(20)
4.1 General Considerations
57(1)
4.2 Central Field Model
58(2)
4.3 Indistinguishable Particles
60(1)
4.4 Electron Configurations
61(2)
4.5 The Periodic Table
63(2)
4.6 Ions
65(1)
4.7 Angular Momentum in Complex Atoms
66(3)
4.7.1 L-S or Russell-Saunders coupling
66(2)
4.7.2 j-j coupling
68(1)
4.7.3 Why two coupling schemes?
68(1)
4.8 Spectroscopic Notation
69(1)
4.9 Parity of the Wavefunction
70(1)
4.10 Terms and Levels in Complex Atoms
71(6)
5 Helium Spectra
77(14)
5.1 He I and He n Spectra
77(2)
5.2 Selection Rules for Complex Atoms
79(3)
5.3 Observing Forbidden Lines
82(1)
5.4 Grotrian Diagrams
83(2)
5.5 Potential Felt by Electrons in Complex Atoms
85(2)
5.6 Emissions of Helium-Like Ions
87(4)
6 Alkali Atoms
91(20)
6.1 Sodium
91(4)
6.2 Spin-Orbit Interactions
95(4)
6.3 Fine Structure Transitions
99(1)
6.4 Astronomical Sodium Spectra
100(4)
6.5 Other Alkali Metal-Like Spectra
104(7)
7 Spectra of Nebulae
111(18)
7.1 Nebulium
112(4)
7.2 The Bowen Mechanism
116(4)
7.3 Two Valence Electrons
120(1)
7.4 Autoionisation and Recombination
121(8)
8 Spectra in Magnetic Fields
129(10)
8.1 Uniform Magnetic Field
130(1)
8.2 Strong Magnetic Field
131(1)
8.3 Weak Magnetic Field
132(3)
8.3.1 The normal Zeeman effect
132(1)
8.3.2 The anomalous Zeeman effect
133(2)
8.4 Spectra in Magnetic Fields
135(4)
9 X-Ray Spectra
139(12)
9.1 Inner Shell Processes
140(2)
9.2 The Solar Corona
142(3)
9.3 The Structure of Highly Ionised Atoms
145(1)
9.4 Isotope Effects
146(5)
10 Line Profiles
151(12)
10.1 Overview
151(1)
10.2 Natural Broadening
152(1)
10.3 Doppler Broadening
152(1)
10.4 Pressure Broadening
153(2)
10.5 Other Broadening Mechanisms
155(1)
10.6 Optical Thickness Effects
156(1)
10.7 Self-absorption
156(2)
10.8 Inflows and Outflows
158(2)
10.9 P Cygni Profiles
160(3)
11 Molecular Structure
163(24)
11.1 The Born-Oppenheimer Approximation
164(2)
11.2 Electronic Structure of Diatomics
166(6)
11.2.1 Labelling of electronic states
168(2)
11.2.2 Symmetry
170(2)
11.2.3 State labels
172(1)
11.3 Schrodinger Equation
172(6)
11.3.1 Nuclear motion in diatomic molecules
173(5)
11.4 Fractionation
178(1)
11.5 Vibration-Rotation Energy Levels
179(3)
11.6 Temperature Effects
182(5)
11.6.1 Rotational state populations
182(2)
11.6.2 Vibrational state populations
184(1)
11.6.3 Electronic state populations
185(2)
12 Rotational Spectra
187(20)
12.1 Rotational Structure of Polyatomic Molecules
188(3)
12.2 Dipole-Allowed Pure Rotational Transitions
191(1)
12.3 Selection Rules
192(5)
12.4 Isotope Effects
197(1)
12.5 Rotational Spectra of Other Molecules
198(3)
12.6 Rotational Spectra of Molecular Hydrogen
201(1)
12.7 Maser Emissions
202(5)
13 Vibration-Rotation Spectra
207(14)
13.1 Vibrations in Polyatomic Molecules
207(2)
13.2 Vibrational Transitions
209(6)
13.2.1 Structure of the spectrum
211(2)
13.2.2 Isotope effects
213(2)
13.2.3 Hydrogen molecule vibrational spectra
215(1)
13.3 Astronomical Spectra
215(6)
14 Electronic Spectra of Diatomic Molecules
221(14)
14.1 Electronic Transitions
221(1)
14.2 Selection Rules
222(4)
14.2.1 Vibrational selection rules
225(1)
14.2.2 Rotational selection rules
225(1)
14.3 Transition Frequencies
226(2)
14.4 Astronomical Spectra
228(1)
14.5 Non-E Electronic States
229(6)
Solutions to Model Problems 235(20)
Further Reading and Bibliography 255(2)
Index 257