Muutke küpsiste eelistusi

E-raamat: Biocomposites: Biomedical and Environmental Applications

Edited by (Jamia Millia Islamia, New Delhi, India), Edited by (Durban University of Technology, South Africa), Edited by (Jamia Millia Islamia, New Delhi, India), Edited by (Durban University of Technology, South Africa)
  • Formaat: 516 pages
  • Ilmumisaeg: 17-Apr-2018
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9781351617147
  • Formaat - EPUB+DRM
  • Hind: 180,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 516 pages
  • Ilmumisaeg: 17-Apr-2018
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9781351617147

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Biomaterials are materials of natural or man-made origin that are used in different fields of science and technology. Biocomposites: Biomedical and Environmental Applications comprehensively covers almost all aspects of biopolymers, natural fibers, algae-based composites, proteins, and bionanocomposites, including recent developments, environmental and biomedical applications, and biocomposites for chemical and biotechnological modifications, material structures, characterization, and processing. These areas have not been covered in a single book before. Most of the books on nano-/biocomposites appear to be quite general and include fundamentals, different methods of synthesis, and applications. This book includes recent advances in science and technology in all areas, from chemical synthesis or biosynthesis to end-use applications. It broadens nano- and biocomposite materials’ research and their applications to highlight the recent trends in the field. The scope of the book includes (i) the classification of nano- and biocomposites, (ii) green/hybrid synthesis and characterization of nano- and biocomposites, (iii) processing of nano- and biocomposites, and (iv) the state of the art in fabricating nano- and biocomposites for (v) biomedical applications, and (iv) environmental applications. This book also discusses new trends in these areas. Part 1 introduces the synthesis and characterization of biocomposites, including natural fibers, resins, etc. Part 2 covers biocomposites such as algae-based composites and proteins and their biomedical and environmental applications. Part 3 covers different bionanocomposites and some of their applications.

This book is aimed at beginners in this field, as well as advanced undergraduate- and graduate-level students in materials science and researchers in the fields of bionanocomposites, nanotechnology, and analytical chemistry, especially those with an interest in materials for analytical applications. Advanced polymer-based nanocomposite materials continue to become increasingly popular and important for a wide range of science and engineering applications. In the race to exploit the unique mechanical, thermal, and electrical properties of nano- and biocomposite materials, researchers must also address new challenges in predicting, understanding, and managing the potentially adverse effects these materials could have on the environment and human lives.

Preface xix
1 Composites from Natural Fibers and Bio-resins 1(26)
Vimla Paul
Maya Jacob John
1.1 Introduction
2(1)
1.2 Lignocellulosic Fibers
2(8)
1.2.1 Chemical Treatment of Banana Fiber
6(4)
1.3 Bio-resins
10(4)
1.3.1 Banana Sap
12(1)
1.3.1.1 Physical and chemical properties of BS bio-resin
13(1)
1.4 Biocomposites
14(3)
1.5 Biodegradability of Hybrid Biocomposites
17(1)
1.6 Conclusion
18(9)
2 Advancements and Potential Prospects of Polymer/Metal Oxide Nanocomposites: From Laboratory Synthesis to Commercialization 27(38)
Deepali Sharma
Karan Vadehra
2.1 Introduction
28(2)
2.2 Different Approaches for Nanocomposite Synthesis
30(5)
2.2.1 Template Synthesis
30(1)
2.2.2 In Situ Synthesis
31(2)
2.2.3 Melt Mixing
33(1)
2.2.4 Solution Intercalation
33(1)
2.2.5 Electrospinning
34(1)
2.2.6 Click Chemistry
35(1)
2.3 Polymer-Based Metal Oxide Nanocomposites
35(8)
2.3.1 Polymer-Iron Oxide-Based Nanocomposites
36(2)
2.3.2 Polymer-Zinc Oxide-Based Nanocomposites
38(2)
2.3.3 Polymer-Silica-Based Nanocomposites
40(2)
2.3.4 Polymer-Titanium Oxide-Based Nanocomposites
42(1)
2.4 Role of Metal Oxide Nanoparticles in Enhancing the Properties of Nanocomposites
43(2)
2.5 Applications of Nanocomposites
45(9)
2.5.1 Sensors
45(3)
2.5.2 Energy Storage
48(1)
2.5.3 Optoelectronics
49(2)
2.5.4 Biomedical
51(1)
2.5.5 Photocatalysis
52(2)
2.6 Commercial Opportunities for Metal Oxide/Polymer Nanocomposites
54(1)
2.7 Conclusion and Future Prospects
55(10)
3 Biomedical Insights of Lipid-and Protein-Based Biocomposites 65(32)
Aasim Majeed
Raoof Ahmad Najar
Shruti Chaudhary
Sapna Thakur
Amandeep Singh
Pankaj Bhardwaj
3.1 Introduction
66(1)
3.2 Protein-Based Biocomposites
67(11)
3.2.1 Medical Applications of Protein-Based Composites
71(7)
3.2.1.1 Tissue engineering
72(3)
3.2.1.2 Cancer therapy
75(1)
3.2.1.3 Wound healing
76(2)
3.3 Lipid-Based Biocomposites
78(7)
3.3.1 Medical Applications of Lipid-Based Composites
79(22)
3.3.1.1 Drug delivery
79(2)
3.3.1.2 Cancer therapy
81(1)
3.3.1.3 Antimicrobial application
82(1)
3.3.1.4 Skin protection
83(1)
3.3.1.5 Dental application
84(1)
3.3.1.6 Miscellaneous
84(1)
3.4 Conclusion
85(12)
4 Biocomposites for Hyperthermia Applications 97(38)
Tomy J. Gutierrez
4.1 Introduction
98(3)
4.2 Synthesis of Iron Nanoparticles
101(4)
4.2.1 Coprecipitation
102(2)
4.2.2 Hydrothermal Method
104(1)
4.3 Magnetite: Tumor Treatment Using External Magnetic Field
105(1)
4.4 In Vivo Studies Demonstrating the Anticancer Effect of Magnetic Nanocarriers
105(2)
4.5 In Vitro Studies Demonstrating the Improvement in Intake Rate of Anticancer Agents Loaded into Nanoparticles in Different Tumor Cells
107(1)
4.6 Saturated Fatty Acids as Coatings for MNPs with Improved Properties as Anticancer Drugs Carriers
108(2)
4.7 Fabrication, Characterization, and In Vitro Assay of Antitumor Activity of Magnetite Coated with Non-polar Shell Without Using External Magnetic Field
110(1)
4.8 Biocomposites from Iron Nanoparticles: Biopolymers
111(5)
4.9 Biocomposites from Iron Nanoparticles: Hydroxyapatite
116(3)
4.10 Conclusion
119(16)
5 Biocomposites Based on Natural Fibers: Concept and Biomedical Applications 135(28)
Raoof Ahmad Najar
Aasim Majeed
Gagan Sharma
Villayat Ali
Pankaj Bhardwaj
5.1 Introduction
136(1)
5.2 Types of Natural Fibers
136(3)
5.3 Natural Fiber-Based Biocomposites
139(3)
5.4 Biomedical Applications of Natural Fibers
142(9)
5.4.1 Tissue Engineering
143(3)
5.4.2 Dental Application
146(1)
5.4.3 Wound Healing
147(1)
5.4.4 Drug Delivery
148(3)
5.5 Conclusion
151(12)
6 Algae-Based Composites and Their Applications 163(18)
Richa Mehra
Satej Bhushan
Balraj Singh Gill
Wahid Ul Rehman
Felix Bast
6.1 Introduction
164(1)
6.2 Bio-based Natural Fibers
165(4)
6.2.1 Algal versus Other Natural and Synthetic Fibers
166(1)
6.2.2 Algal Constituents as Biocomposite Candidate
167(2)
6.2.2.1 Alginate
167(1)
6.2.2.2 Cellulose
168(1)
6.2.2.3 Agar
168(1)
6.2.2.4 Carrageenan
169(1)
6.3 Synthesis of Biocomposites
169(2)
6.3.1 Algae Culture
169(1)
6.3.2 Extraction of Algal Fiber
169(1)
6.3.3 Natural Fiber Processing
170(1)
6.4 Applications of Algae-Based Composites
171(5)
6.4.1 Biosorption of Heavy Metals
172(1)
6.4.2 Automotive Industry
172(1)
6.4.3 Construction Materials
173(1)
6.4.4 Medical Applications
173(1)
6.4.5 Packaging Industry
174(1)
6.4.6 Cosmetics
174(1)
6.4.7 Textiles
175(1)
6.4.8 Paper Industry
175(1)
6.5 Challenges and Future Prospects
176(5)
7 Going Green Using Colocasia esculenta Starch and Starch Nanocrystals in Food Packaging 181(18)
Bruce Saunders Chakara
Shalini Singh
7.1 Introduction
182(1)
7.2 Food Packaging
182(5)
7.2.1 Conventional Synthetic Packaging
183(2)
7.2.2 Biofilms, Edible Films, and Coatings
185(2)
7.3 Starch
187(4)
7.3.1 Potato
189(1)
7.3.2 Cassava
189(1)
7.3.3 Maize
190(1)
7.3.4 Amadumbe
190(1)
7.4 Methods
191(3)
7.4.1 Starch Extraction
192(1)
7.4.1.1 Water extraction method
192(1)
7.4.1.2 Alkaline extraction method
192(1)
7.4.2 Preparation of Starch Nanocrystals
192(1)
7.4.3 Film Preparation
193(8)
7.4.3.1 Scanning electron microscopy
193(1)
7.4.3.2 Transmission electron microscopy
194(1)
7.5 Conclusion
194(5)
8 Bionanocomposite Materials: Concept, Applications, and Recent Advancements 199(18)
Nafees Ahmad
Saima Sultana
Suhail Sabir
Ameer Azam
Mohammad Zain Khan
8.1 Introduction
200(1)
8.2 Types of Bionanocomposites
201(3)
8.2.1 Polysaccharide-Based Bionanocomposites
201(2)
8.2.1.1 Chitosan-based bionanocomposites
201(1)
8.2.1.2 Cellulose-based bionanocomposites
202(1)
8.2.1.3 Starch-based bionanocomposites
202(1)
8.2.1.4 Chitin-based bionanocomposites
202(1)
8.2.2 Nanoclay-Based Nanocomposites
203(1)
8.2.3 Hallyosite-Based Nanocomposites
203(1)
8.3 Preparation and Modifications
204(1)
8.4 Special Properties of Bionanocomposites
205(2)
8.4.1 Mechanical and Barrier Properties
205(1)
8.4.1.1 Young's modulus and tensile strength
206(1)
8.4.1.2 Toughness and strain
206(1)
8.4.2 Biological Properties
206(1)
8.4.3 Thermal Properties
206(1)
8.4.4 Antimicrobial Properties
207(1)
8.5 Recent Advances in the Field of Bionanocomposites
207(1)
8.6 Applications of Bionanocomposites
208(2)
8.6.1 Electronic, Sensor, and Energy Generation
208(1)
8.6.2 Biomedical Applications
209(1)
8.6.3 Packaging Applications
209(1)
8.7 Challenges
210(1)
8.8 Conclusion and Future Trends
210(7)
9 Plant Fiber-Reinforced Thermoset and Thermoplastic-Based Biocomposites 217(58)
T.P. Mohan
Krishnan Kanny
9.1 Introduction
218(1)
9.2 Natural Fibers as Reinforcement
218(5)
9.3 Woven and Non-woven Fabric
223(2)
9.3.1 Woven Fabric
223(1)
9.3.2 Non-woven Fabric
224(1)
9.4 Comparison of Non-woven and Woven Fabrics
225(1)
9.5 Mechanical Properties: Woven versus Non-woven Kenaf Fibers
226(2)
9.6 Types of Plant Fibers and Chemical Treatments
228(6)
9.6.1 Types of Plant Fibers
228(1)
9.6.2 Chemical and Thermal Treatment of Fibers
229(5)
9.6.2.1 Alkali treatments
230(1)
9.6.2.2 Acid treatments
231(1)
9.6.2.3 Pyrolysis treatments
232(1)
9.6.2.4 Coating with silane treatment
233(1)
9.6.2.5 Benzoylation treatment
234(1)
9.7 Plant Fiber-Reinforced Thermoplastic Composites
234(13)
9.7.1 Processing and Characterization for the Processing of Natural Fiber-Reinforced Thermoplastics
235(6)
9.7.1.1 Polymer solution casting
236(2)
9.7.1.2 Compression molding
238(1)
9.7.1.3 Injection molding
239(2)
9.7.2 Mechanical, Thermal, and Physical Properties
241(2)
9.7.3 Flame-Retardant Properties of NFPCs
243(1)
9.7.4 Biodegradability of NFPCs
244(1)
9.7.5 Energy Absorption of NFPCs
244(1)
9.7.6 Water Absorption Characteristics of NFPCs
245(2)
9.8 Products and Applications of Plant Fiber-Reinforced Thermoplastics
247(2)
9.9 Plant Fiber-Reinforced Thermoset Composites
249(10)
9.9.1 General Characteristics of NFPCs
250(2)
9.9.2 Vacuum-Assisted Resin Transfer Molding
252(3)
9.9.3 Resin Transfer Molding
255(1)
9.9.4 Benefits of RTM
256(1)
9.9.5 Mechanical Properties of NFPCs
257(1)
9.9.6 Viscoelastic Behavior of NFPCs
257(2)
9.10 Applications of Natural Fiber Polymer Composites
259(3)
9.10.1 Natural Fiber Applications in the Industry
260(2)
9.11 Rubber Composite Materials (Natural Fibers)
262(14)
9.11.1 Properties of Rubber Composites
263(2)
9.11.2 Manufacturing Process of Rubber Composites
265(1)
9.11.3 Applications of Rubber Composites
265(1)
9.12 Conclusion and Future Scope
266(9)
10 Multifaceted Applications of Nanoparticles and Nanocomposites Decorated with Biopolymers 275(22)
Natarajan Kumari Ahila
Arivalagan Pugazhendhi
Sutha Shobana
Indira Karuppusamy
Vijayan Sri Ramkumar
Ethiraj Kannapiran
Periyasamy Sivagurunathan
Gopalakrishnan Kumar
10.1 Introduction
276(3)
10.2 Biosynthesis of Metal Nanocomposites
279(6)
10.2.1 Gold Nanoparticles
279(3)
10.2.2 Silver Nanoparticles
282(1)
10.2.3 Platinum Nanoparticles
283(1)
10.2.4 Copper Nanoparticles
283(1)
10.2.5 Titanium Oxide Nanoparticles
284(1)
10.3 Biopolymers
285(4)
10.3.1 Nanocomposites from Bacteria
287(1)
10.3.2 Polyhydroxyalkanoates
288(1)
10.3.3 Application of Biopolymer-Metal Nanocomposites
289(1)
10.4 Biomedical Applications
289(3)
10.4.1 Tissue Engineering
289(2)
10.4.2 Drug-Delivery Systems
291(1)
10.5 Conclusion
292(5)
11 Bionanocomposites, Their Processing, and Environmental Applications 297(32)
Sagar Roy
Chaudhery Mustansar Hussain
11.1 Introduction: Biodegradable Polymers
298(2)
11.2 Conventional Polymers versus Biodegradable Polymers
300(1)
11.3 Classification and Properties of Biodegradable Polymers
301(15)
11.3.1 Natural Biodegradable Polymers
302(5)
11.3.1.1 Polysaccharides
302(1)
11.3.1.2 Lignocellulosic complex (fibers)
303(1)
11.3.1.3 Starch
304(1)
11.3.1.4 Chitin and chitosan
305(1)
11.3.1.5 Alginic acid
306(1)
11.3.2 Polypeptides of Natural Origin
307(3)
11.3.2.1 Collagen and gelatin
307(1)
11.3.2.2 Corn zein
308(1)
11.3.2.3 Wheat gluten
308(1)
11.3.2.4 Soy protein
309(1)
11.3.2.5 Casein and caseinate
309(1)
11.3.2.6 Whey proteins
309(1)
11.3.3 Biopolymers Synthesized from Bio-derived and Synthetic Monomers
310(3)
11.3.3.1 Poly(lactic acid) or polylactide
310(1)
11.3.3.2 Poly(glycolic acid)
310(1)
11.3.3.3 Poly(E-caprolactone)
311(1)
11.3.3.4 Poly(butylene succinate) and its copolymer
311(1)
11.3.3.5 Poly(p-dioxanone)
312(1)
11.3.3.6 Poly(hydroxyalcanoate)
312(1)
11.3.4 Other Important Biodegradable Polymers
313(3)
11.3.4.1 Bacterial cellulose
313(1)
11.3.4.2 Poly(vinyl alcohol) and Poly(vinyl acetate)
313(1)
11.3.4.3 Poly(carbonate)
314(1)
11.3.4.4 Polyurethanes
314(1)
11.3.4.5 Polyamide and poly(ester-amide)
315(1)
11.3.4.6 Polyanhydrides
315(1)
11.4 Nanofillers for Bionanocomposites
316(3)
11.4.1 Cellulose-Based Nanofillers
317(1)
11.4.2 Carbon Nanotubes
318(1)
11.4.3 Nanoclays
318(1)
11.5 Processing Aspects of Bionanocomposites
319(4)
11.5.1 Conventional Manufacturing Techniques
319(2)
11.5.2 In Situ Intercalative Polymerization
321(1)
11.5.3 Exfoliation-Adsorption
321(1)
11.5.4 Melt Intercalation
322(1)
11.5.5 Foam Processing Using Supercritical CO2
322(1)
11.5.6 Template Synthesis
323(1)
11.6 Environmental Applications of Bionanocomposites
323(2)
11.7 Conclusion
325(4)
12 Bionanocomposites in Water and Wastewater Treatment 329(34)
Gulshan Singh
Deepali Sharma
Thor Axel Stenstrom
12.1 Introduction
330(3)
12.2 Polymer Bionanocomposites
333(20)
12.2.1 Polysaccharide-Based Bionanocomposites
336(17)
12.2.1.1 Chitosan-based polymer bionanocomposites
337(4)
12.2.1.2 Gum polysaccharide-based bionanocomposites
341(6)
12.2.1.3 Cellulose nanocomposites
347(6)
12.2.2 Protein-Based Bionanocomposites
353(1)
12.3 Conclusion and Future Perspectives
353(10)
13 Gamma Radiation Studies on Thermoplastic Polyurethane/Nanosilica Composites 363(12)
Abitha V.K.
Rane Ajay Vasudeo
Krishnan Kanny
Sabu Thomas
Niji M.R.
K. Rajkumar
13.1 Introduction
364(3)
13.2 Preparation of Thermoplastic Polyurethane/Nanosilica Composite
367(1)
13.2.1 Preparation of Nanocomposites
367(1)
13.3 Results and Discussions
368(5)
13.3.1 Mechanical Properties
368(1)
13.3.2 Electrical Properties
369(2)
13.3.2.1 Comparison of mechanical properties with normal silica versus nanosilica
371(1)
13.3.3 Thermal Analysis of Nanosilica Composites
371(6)
13.3.3.1 Comparison of thermal properties with nanosilica versus normal silica
372(1)
13.4 Conclusion
373(2)
14 Removal of Heavy Metals and Textile Dyes in Industrial Wastewater Using Biopolymers and Biocomposites 375(30)
May Myat Khine
Nang Seng Moe
Kyaw Nyein Aye
Nitar Nwe
14.1 Introduction
376(1)
14.2 Removal of Heavy Metals in Industrial Wastewater Using Biopolymers and Biocomposites
377(14)
14.2.1 Types of Heavy Metals in Industrial Wastewater
377(1)
14.2.2 Removal of Heavy Metals Using Biopolymers
377(1)
14.2.3 Removal of Heavy Metals Using Biocomposites
378(3)
14.2.4 Method for Treatment of Heavy Metals in Wastewater
381(1)
14.2.5 Adsorption Process
381(5)
14.2.6 Advantages and Disadvantages of Heavy Metal-Removal Techniques
386(2)
14.2.7 Types of Heavy Metals and Their Effect on Human Health
388(3)
14.3 Removal of Textile Dyes in Industrial Wastewater Using Biopolymers and Biocomposites
391(6)
14.3.1 Classification of Dyes Based on Their Applications
391(1)
14.3.2 Types of Textile Dyes in Industrial Wastewater
392(1)
14.3.3 Removal of Textile Dyes in Industrial Wastewater Using Biopolymers
393(1)
14.3.4 Removal of Textile Dyes in Industrial Wastewater Using Biocomposites
394(1)
14.3.5 Method for Treatment of Textile Dye in Wastewater
395(1)
14.3.6 Advantages and Disadvantages of Various Dye-Removal Techniques
396(1)
14.4 Conclusion
397(8)
15 Bio-based Material Protein and Its Novel Applications 405(28)
Tanvir Arfin
Pooja R. Mogarkar
15.1 Introduction
406(1)
15.2 Amino Acids
407(1)
15.2.1 Classification of Amino Acids
407(1)
15.3 Classification of Proteins
408(5)
15.3.1 Simple Proteins
409(1)
15.3.1.1 Fibrous proteins
410(1)
15.3.1.2 Globular proteins
410(1)
15.3.2 Conjugated Proteins
410(2)
15.3.2.1 Glycoproteins or mucoproteins
411(1)
15.3.2.2 Lipoproteins
411(1)
15.3.2.3 Nucleoproteins
411(1)
15.3.2.4 Phosphoproteins
412(1)
15.3.2.5 Chromoproteins or metalloproteins
412(1)
15.3.3 Derived Proteins
412(1)
15.4 Structure of Protein
413(4)
15.4.1 Primary Structure
413(1)
15.4.2 Secondary Structure
413(2)
15.4.3 Tertiary Structure
415(1)
15.4.4 Quaternary Structure
416(1)
15.5 Properties of Proteins
417(1)
15.5.1 Electrolytic Properties of Protein
417(1)
15.5.2 Ionic Characteristics
417(1)
15.5.3 Solubility
417(1)
15.5.4 Hydrolytic Characteristic
417(1)
15.5.5 Putrefaction
418(1)
15.6 Native Proteins and Their Denaturation
418(2)
15.6.1 Denaturation
418(2)
15.7 Protein Gels
420(1)
15.7.1 Adsorption
420(1)
15.7.2 Three-Dimensional Network Theories
421(1)
15.7.3 Particle Orientation Theory
421(1)
15.8 Food Proteins
421(2)
15.8.1 Animal Proteins
422(1)
15.8.2 Vegetable Proteins
422(1)
15.9 Non-traditional Proteins
423(1)
15.10 Nutritional Importance of Proteins
424(2)
15.11 Applications of Protein-Based Biocomposites
426(4)
15.11.1 Protein-Based Biocomposites as Biodegradable Packaging Materials
426(1)
15.11.2 Protein-Based Thermoplastics in Biomedical Applications
427(1)
15.11.3 Agriculture
428(1)
15.11.4 Tissue Engineering
428(1)
15.11.5 Textile Industry
429(1)
15.11.6 Other Applications
429(1)
15.12 Conclusion and Future Perspectives
430(3)
16 Biopolyesters: Novel Candidates to Develop Multifunctional Biocomposites 433(24)
Hafiz M.N. Iqbal
Tajalli Keshavarz
16.1 Introduction
434(1)
16.2 Biopolyesters
434(3)
16.3 Physiochemical Characteristics of Biopolyesters
437(1)
16.4 Poly(3-hydroxybutyrate)
437(2)
16.5 Biocomposites
439(1)
16.6 Properties of Biocomposites for Biomedical Applications
440(2)
16.6.1 Biocompatibility and Biodegradability
440(2)
16.7 Biomedical and Biotechnological Applications
442(4)
16.7.1 Biomedical Applications
443(2)
16.7.2 Biotechnological Applications
445(1)
16.8 Concluding Remarks and Future Considerations
446(11)
17 Treatment of Industrial Wastewater Using Biopolymers and Biocomposites 457(26)
Nang Seng Moe
May Myat Khine
Kyaw Nyein Aye
Hiroshi Tamura
Hideki Yamamoto
Nitar Nwe
17.1 Introduction
458(1)
17.2 Wastewater from Various Industries
459(6)
17.2.1 Wastewater from Food Industries
459(1)
17.2.2 Wastewater from Distillery Plants
459(1)
17.2.3 Wastewater from Coffee Processing
460(1)
17.2.4 Wastewater from Milk Industries
461(1)
17.2.5 Wastewater from Slaughterhouses
462(1)
17.2.6 Wastewater from Other Industries
463(2)
17.3 Methods of Wastewater Treatment
465(3)
17.3.1 Physical Treatment
465(1)
17.3.2 Biological Treatment
466(1)
17.3.3 Chemical Treatment
467(1)
17.4 Types of Reactors Used in Wastewater Treatment
468(4)
17.4.1 Membrane Filtration
468(1)
17.4.2 Fluidization
469(1)
17.4.3 Complete Mixed Reactor
470(1)
17.4.4 Anaerobic Filters
471(1)
17.5 Application of Biopolymer and Biocomposite in Wastewater Treatment
472(3)
17.5.1 Application of Chitosan in Wastewater Treatment
472(2)
17.5.2 Application of Alginate in Wastewater Treatment
474(1)
17.6 Agriculture Byproducts as Low-Cost Biosorbent for Wastewater Treatment
475(2)
17.7 Conclusion
477(6)
Index 483
Shakeel Ahmed is assistant professor in the Department of Chemistry, Government Degree College Mendhar, India. His research focuses on biopolymeric and green nanomaterials, and he has authored several articles on their various applications in the fields of biomedicine, packaging, and water treatment.

Saiqa Ikram is assistant professor in the Department of Chemistry, Jamia Millia Islamia, India. Her area of research is polymers and their modifications for application in water treatment and wound care. She has authored or coauthored a few books and book chapters and more than 50 articles in international peer-reviewed journals.

Suvardhan Kanchi is research scientist at Durban University of Technology, South Africa. His current research involves developing a method to separate organic and inorganic molecules from environmental samples using capillary electrophoresis. He is also interested in the fabrication of electrochemical nano-/biosensors for high-intensity artificial sweeteners, bisphenols, and dyes.

Krishna Bisetty is head of the Department of Chemistry, Durban University of Technology. His research focuses on high-performance computing, ranging from small organic molecules to bioactive macromolecules, including the development of computational models for the design of more effective hostguest systems using state-of-the-art molecular dynamics and docking simulations supported by experimental studies.