Muutke küpsiste eelistusi

E-raamat: Biomedical Optics: Principles and Imaging

  • Formaat: PDF+DRM
  • Ilmumisaeg: 26-Sep-2012
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9780470177006
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 155,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 26-Sep-2012
  • Kirjastus: Wiley-Interscience
  • Keel: eng
  • ISBN-13: 9780470177006
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wang (biomedical engineering and optical imaging, Washington U., Missouri) and Wu (biomedical engineering, Texas A&M U.) offer a textbook for a one-semester or two-semester course introducing biomedical optics. They cover the fundamentals of photon transport in biological tissue, and optical imaging. Students are expected to have a background in calculus and differential equations; experience in MATLAB or C/C++ would also be helpful. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)

This entry-level textbook, covering the area of tissue optics, is based on the lecture notes for a graduate course (Bio-optical Imaging) that has been taught six times by the authors at Texas A&M University. After the fundamentals of photon transport in biological tissues are established, various optical imaging techniques for biological tissues are covered. The imaging modalities include ballistic imaging, quasi-ballistic imaging (optical coherence tomography), diffusion imaging, and ultrasound-aided hybrid imaging. The basic physics and engineering of each imaging technique are emphasized.

A solutions manual is available for instructors; to obtain a copy please email the editorial department at ialine@wiley.com.

Preface xiii
1. Introduction
1
1.1. Motivation for Optical Imaging
1
1.2. General Behavior of Light in Biological Tissue
2
1.3. Basic Physics of Light—Matter Interaction
3
1.4. Absorption and its Biological Origins
5
1.5. Scattering and its Biological Origins
7
1.6. Polarization and its Biological Origins
9
1.7. Fluorescence and its Biological Origins
9
1.8. Image Characterization
10
Problems
14
Reading
15
Further Reading
15
2. Rayleigh Theory and Mie Theory for a Single Scatterer
17
2.1. Introduction
17
2.2. Summary of Rayleigh Theory
17
2.3. Numerical Example of Rayleigh Theory
19
2.4. Summary of Mie Theory
20
2.5. Numerical Example of Mie Theory
21
Appendix 2A. Derivation of Rayleigh Theory
23
Appendix 2B. Derivation of Mie Theory
26
Problems
34
Reading
35
Further Reading
35
3. Monte Carlo Modeling of Photon Transport in Biological Tissue
37
3.1. Introduction
37
3.2. Monte Carlo Method
37
3.3. Definition of Problem
38
3.4. Propagation of Photons
39
3.5. Physical Quantities
50
3.6. Computational Examples
55
Appendix 3A. Summary of MCML
58
Appendix 3B. Probability Density Function
60
Problems
60
Reading
62
Further Reading
62
4. Convolution for Broadbeam Responses
67
4.1. Introduction
67
4.2. General Formulation of Convolution
67
4.3. Convolution over a Gaussian Beam
69
4.4. Convolution over a Top-Hat Beam
71
4.5. Numerical Solution to Convolution
72
4.6. Computational Examples
77
Appendix 4A. Summary of CONV
77
Problems
80
Reading
81
Further Reading
81
5. Radiative Transfer Equation and Diffusion Theory
83
5.1. Introduction
83
5.2. Definitions of Physical Quantities
83
5.3. Derivation of Radiative Transport Equation
85
5.4. Diffusion Theory
88
5.5. Boundary Conditions
101
5.6. Diffuse Reflectance
106
5.7. Photon Propagation Regimes
114
Problems
116
Reading
117
Further Reading
118
6. Hybrid Model of Monte Carlo Method and Diffusion Theory
119
6.1. Introduction
119
6.2. Definition of Problem
119
6.3. Diffusion Theory
119
6.4. Hybrid Model
122
6.5. Numerical Computation
124
6.6. Computational Examples
125
Problems
132
Reading
133
Further Reading
133
7. Sensing of Optical Properties and Spectroscopy
135
7.1. Introduction
135
7.2. Collimated Transmission Method
135
7.3. Spectrophotometry
139
7.4. Oblique-Incidence Reflectometry
140
7.5. White-Light Spectroscopy
144
7.6. Time-Resolved Measurement
145
7.7. Fluorescence Spectroscopy
146
7.8. Fluorescence Modeling
147
Problems
148
Reading
149
Further Reading
149
8. Ballistic Imaging and Microscopy
153
8.1. Introduction
153
8.2. Characteristics of Ballistic Light
153
8.3. Time-Gated Imaging
154
8.4. Spatiofrequency-Filtered Imaging
156
8.5. Polarization-Difference Imaging
157
8.6. Coherence-Gated Holographic Imaging
158
8.7. Optical Heterodyne Imaging
160
8.8. Radon Transformation and Computed Tomography
163
8.9. Confocal Microscopy
164
8.10. Two-Photon Microscopy
169
Appendix 8A. Holography
171
Problems
175
Reading
177
Further Reading
177
9. Optical Coherence Tomography
181
9.1. Introduction
181
9.2. Michelson Interferometry
181
9.3. Coherence Length and Coherence Time
184
9.4. Time-Domain OCT
185
9.5. Fourier-Domain Rapid-Scanning Optical Delay Line
195
9.6. Fourier-Domain OCT
198
9.7. Doppler OCT
206
9.8. Group Velocity Dispersion
207
9.9. Monte Carlo Modeling of OCT
210
Problems
213
Reading
215
Further Reading
215
10. Mueller Optical Coherence Tomography 219
10.1. Introduction
219
10.2. Mueller Calculus versus Jones Calculus
219
10.3. Polarization State
219
10.4. Stokes Vector
222
10.5. Mueller Matrix
224
10.6. Mueller Matrices for a Rotator, a Polarizer, and a Retarder
225
10.7. Measurement of Mueller Matrix
227
10.8. Jones Vector
229
10.9. Jones Matrix
230
10.10. Jones Matrices for a Rotator, a Polarizer, and a Retarder
230
10.11. Eigenvectors and Eigenvalues of Jones Matrix
231
10.12. Conversion from Jones Calculus to Mueller Calculus
235
10.13. Degree of Polarization in OCT
236
10.14. Serial Mueller OCT
237
10.15. Parallel Mueller OCT
237
Problems
243
Reading
244
Further Reading
245
11. Diffuse Optical Tomography 249
11.1. Introduction
249
11.2. Modes of Diffuse Optical Tomography
249
11.3. Time-Domain System
251
11.4. Direct-Current System
252
11.5. Frequency-Domain System
253
11.6. Frequency-Domain Theory: Basics
256
11.7. Frequency-Domain Theory: Linear Image Reconstruction
261
11.8. Frequency-Domain Theory: General Image Reconstruction
267
Appendix 11A. ART and SIRT
275
Problems
276
Reading
279
Further Reading
279
12. Photoacoustic Tomography 283
12.1. Introduction
283
12.2. Motivation for Photoacoustic Tomography
283
12.3. Initial Photoacoustic Pressure
284
12.4. General Photoacoustic Equation
287
12.5. General Forward Solution
288
12.6. Delta-Pulse Excitation of a Slab
293
12.7. Delta-Pulse Excitation of a Sphere
297
12.8. Finite-Duration Pulse Excitation of a Thin Slab
302
12.9. Finite-Duration Pulse Excitation of a Small Sphere
303
12.10. Dark-Field Confocal Photoacoustic Microscopy
303
12.11. Synthetic Aperture Image Reconstruction
307
12.12. General Image Reconstruction
309
Appendix 12A. Derivation of Acoustic Wave Equation
313
Appendix 12B. Green Function Approach
316
Problems
317
Reading
319
Further Reading
319
13. Ultrasound-Modulated Optical Tomography 323
13.1. Introduction
323
13.2. Mechanisms of Ultrasonic Modulation of Coherent Light
323
13.3. Time-Resolved Frequency-Swept UOT
326
13.4. Frequency-Swept UOT with Parallel-Speckle Detection
329
13.5. Ultrasonically Modulated Virtual Optical Source
331
13.6. Reconstruction-Based UOT
332
13.7. UOT with Fabry–Perot Interferometry
335
Problems
338
Reading
339
Further Reading
339
Appendix A. Definitions of Optical Properties 343
Appendix B. List of Acronyms 345
Index 347


Lihong V. Wang, PhD, is Gene K. Beare Distinguished Professor in the Department of Biomedical Engineering and Director of the Optical Imaging Laboratory at Washington University in St. Louis. Dr. Wang is Chair of the International Biomedical Optics Society. His?Monte Carlo model of photon transport in biological tissues has been used worldwide. He has published more than 120 peer-reviewed journal articles and patents. HSIN-I WU, PhD, is Professor of Biomedical Engineering at Texas A&M University. He has published more than fifty peer-reviewed journal articles. Dr. Wu was a senior Fulbright scholar and is listed in Outstanding Educators of America. He serves on the Editorial Advisory Board of Biocomplexity and the Editorial Board of BioMedical Engineering OnLine.