Muutke küpsiste eelistusi

E-raamat: Broadband Direct RF Digitization Receivers

  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes the system-level design of an application-optimized signal conditioner together with its control algorithm and a mixed-signal AGC loop combining RMS and peak detection.

This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains. A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis. Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC.
A two-chip implementation is presented, using BiCMOS and 65nm CMOS processes, together with the block and system-level measurement results. Readers will benefit from the techniques presented, which are highly competitive, both in terms of cost and RF performance, while drastically reducing power consumption.
1 RF Receiver Architecture State of the Art
1(38)
1.1 Mixing Process
1(6)
1.1.1 Image-Reject Filter
3(1)
1.1.2 Image-Reject Mixers
3(1)
1.1.3 Mixing with LO Harmonics
4(1)
1.1.4 Harmonic-Reject Mixers
5(2)
1.2 Sampling Process
7(6)
1.2.1 Low-Pass 1st-Order Sampling
7(1)
1.2.2 Band-Pass 1st-Order Sampling (Subsampling)
8(1)
1.2.3 Nth-Order Sampling
8(5)
1.3 Analog-to-Digital Conversion
13(9)
1.3.1 Flash
13(1)
1.3.2 Pipeline
14(2)
1.3.3 SAR
16(1)
1.3.4 Delta-Sigma
17(2)
1.3.5 Time Interleaving
19(2)
1.3.6 ADC State-of-the-Art Comparison and Expected Future Trends
21(1)
1.4 Continuous-Time Receivers
22(6)
1.4.1 Super-Heterodyne
22(1)
1.4.2 Homodyne
23(3)
1.4.3 Low IF
26(2)
1.4.4 Digital-IF Receiver
28(1)
1.5 Discrete-Time Receivers
28(11)
1.5.1 Discrete-Time Analog-Processing Receivers
28(2)
1.5.2 Hybrid-Filter Bank Receiver
30(2)
1.5.3 Direct RF Digitization Receiver
32(4)
1.5.4 Summary and Work Orientation
36(3)
2 System-Level Design Framework for Direct RF Digitization Receivers
39(60)
2.1 System-Level Aspects
39(5)
2.1.1 Signal Characteristics
40(1)
2.1.2 BER and Es/NO
41(1)
2.1.3 Sensitivity Test
41(1)
2.1.4 Adjacent and Blocker Test
42(1)
2.1.5 Intermodulation and Broadband Non-linearity Test
42(1)
2.1.6 Summary
43(1)
2.2 Receiver System-Level Design
44(55)
2.2.1 Equivalent Noise Figure
44(2)
2.2.2 Receiver Implementation Loss
46(1)
2.2.3 Noise Analysis
46(14)
2.2.4 Non-linear Distortion
60(3)
2.2.5 Nonlinear Distortion in a Broadband System
63(10)
2.2.6 Aliasing
73(1)
2.2.7 Time-Interleaved ADC
74(10)
2.2.8 Sampling Clock Requirements
84(9)
2.2.9 Digital Channel Selection
93(6)
3 Application to the System Design of a Multichannel Cable Receiver
99(26)
3.1 Overview of the Cable Reception
99(3)
3.2 Cable Reception Key Specifications
102(5)
3.2.1 Standardized Requirements
102(1)
3.2.2 Worst-Case Field Test Conditions
103(4)
3.3 System Design of Cable Multichannel Receiver
107(16)
3.3.1 ADC Sampling Rate
107(1)
3.3.2 System-Level Design Strategy for Cable Reception
108(1)
3.3.3 Noise Analysis
108(4)
3.3.4 RF Tilt Equalizer Impact on Noise
112(2)
3.3.5 RFFE Gain Range
114(1)
3.3.6 Nonlinear Distortion Analysis
115(1)
3.3.7 Anti-aliasing Filter
116(1)
3.3.8 Time-Interleaved ADC Specification
117(3)
3.3.9 Sampling Clock Specification
120(3)
3.4 Summary
123(2)
4 Realization and Measurements
125(26)
4.1 RF Front End
125(7)
4.1.1 Low-Noise Amplifier
127(1)
4.1.2 RF Tilt Equalizer Design
128(2)
4.1.3 Anti-Aliasing Filter
130(2)
4.1.4 Single-To-Differential Converter
132(1)
4.1.5 RFFE Measurements
132(1)
4.2 Mixed-Signal Front end
132(8)
4.2.1 ADC
134(1)
4.2.2 Digital Channel Selection
135(5)
4.3 Mixed-Signal AGC Loop
140(2)
4.3.1 RMS Loop
142(1)
4.3.2 Peak Loop
142(1)
4.4 RF Tilt Equalizer Control Loop
142(2)
4.4.1 RFFE Measurements
143(1)
4.5 System-Level Measurements
144(3)
4.6 Summary
147(4)
Conclusions and Perspectives 151(4)
References 155(6)
Index 161