Muutke küpsiste eelistusi

E-raamat: Control Applications of Vehicle Dynamics

(University of Alabama at Birmingham, USA), (JSJ Corporation, Germany)
  • Formaat - PDF+DRM
  • Hind: 110,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book integrates essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics controllers.

This book integrates essential knowledge of car vehicle dynamics and control theory with NI LabVIEW software product application, resulting in a practical yet highly technical guide for designing advanced vehicle dynamics controllers.

Presenting a clear overview of fundamental vehicle dynamics and vehicle system mathematical models, the book covers the design of model based classical PID, adaptive, quadratic optimal and inverse dynamics-based controllers of linear and non-linear systems. It details Kalman-Bucy filtering, and its practical applications, alongside the basic kinematics and dynamics of a vehicle in planar motion, deriving equations of wheel dynamics and tire forces in forms appropriate for control design. The book also discusses lateral vehicle dynamics and vehicle vertical dynamics, high level controllers and vehicle sensor signal estimation, alongside a clear explanation of basic control principles for regenerative braking in both electric and hybrid vehicles, and torque vectoring systems. LabVIEW fundamentals are provided and used to design and implement controller examples in the book.

The book will be of interest to engineering students, automotive engineering students and automotive engineers and researchers.

Series Preface ix
Preface xi
Acknowledgments xiii
Author Biographies xv
PART I Modeling of Vehicle Dynamics
Chapter 1 Introduction
3(26)
1.1 Vehicle System Dynamics: Brief History and Future Research Directions
3(10)
1.2 Modeling of Vehicle Dynamics
13(1)
1.3 Control of Vehicle Dynamics
14(1)
1.4 Coordinate Systems
15(3)
References
18(11)
Chapter 2 Essential Kinematics and Dynamics
29(26)
2.1 Vector Descriptions and Transformations
29(8)
2.2 Change Rate of Vector in Rotating Frame
37(5)
2.3 Velocities of Points on a Rigid Body
42(1)
2.4 Vehicle Velocities and Accelerations
43(6)
2.5 Newton's and Euler's Equations
49(4)
2.6 Power and Efficiency
53(1)
References
54(1)
Chapter 3 Vehicle Longitudinal Dynamics
55(18)
3.1 Dynamics of Wheel And Tire
57(3)
3.1.1 Basic Equations
57(2)
3.1.2 Rolling Resistance
59(1)
3.2 Tire Force Properties
60(5)
3.2.1 Longitudinal Tire Force
60(1)
3.2.2 Lateral Tire Force
61(2)
3.2.3 Camber Angle and Camber Force
63(1)
3.2.4 Kamm Circle
63(2)
3.3 Total Force and Moment Loads on Wheels
65(1)
3.4 Equations of Vehicle Motion
66(5)
3.4.1 Vehicle Forces and Moments
66(1)
3.4.2 Aerodynamic Forces
67(3)
3.4.3 Dynamic Axle Loads
70(1)
References
71(2)
Chapter 4 Tire and Wheel Characteristics
73(10)
4.1 Brake Slip
74(1)
4.2 Tractive Slip
75(1)
4.3 Tire Friction Properties
76(6)
References
82(1)
Chapter 5 Acceleration Analysis
83(28)
5.1 Driveline Torque Distribution
83(10)
5.1.1 Driveline Configuration
83(8)
5.1.2 Power Delivery Through Powertrain
91(2)
5.2 Longitudinal Acceleration
93(16)
5.2.1 Driving Force Distribution
94(3)
5.2.2 Ideal Driving Force Distribution
97(1)
5.2.3 Traction Capability at Different Driveline Configurations
98(4)
5.2.4 Vehicle Stability in Driving Mode of Operation
102(3)
5.2.5 Design Implementation of Ideal Torque Distribution
105(2)
5.2.6 Wheel Torque Vectoring
107(2)
References
109(2)
Chapter 6 Braking Mechanics
111(18)
6.1 Straight-Line Braking
111(8)
6.1.1 Deceleration and Braking Efficiency
111(2)
6.1.2 Braking Force Distribution
113(6)
6.2 Braking In Turn
119(5)
6.3 Braking Stability
124(2)
6.4 Trailer Influence On Braking
126(2)
References
128(1)
Chapter 7 Regenerative Braking
129(12)
7.1 Ev And Hev Powertrain Configuration
129(2)
7.2 Electric Motor
131(3)
7.3 Power Electronics Unit
134(3)
7.4 Regeneration Torque
137(2)
7.5 Vehicle Energy Balance In Braking
139(1)
References
140(1)
Chapter 8 Vehicle Lateral Dynamics
141(20)
8.1 Steering Geometry
141(3)
8.2 Kinematic Parameters
144(3)
8.3 Nonlinear Two-Track Model
147(2)
8.4 Single-Track Model
149(4)
8.5 Bicycle Model
153(1)
8.6 Influence of Crosswind
154(2)
8.7 Vehicle-Trailer Model
156(4)
References
160(1)
Chapter 9 System Characteristics of Lateral Dynamics
161(26)
9.1 Steering Characteristics
161(2)
9.2 Understeer/Oversteer Gradient
163(5)
9.3 Vehicle Dynamic Response to Steering Input
168(9)
9.4 Steady-State Gains
177(3)
9.5 Characteristic And Critical Speeds
180(2)
9.6 Stability Consideration
182(1)
9.7 Influence Of 4Ws Configuration
183(3)
References
186(1)
Chapter 10 Normal and Roll Dynamics
187(20)
10.1 Quarter-Car Model
188(3)
10.2 Roll Movement
191(2)
10.3 Vehicle Transverse Model
193(4)
10.4 Vehicle Two-Axle Model
197(2)
10.5 Steady-State
199(2)
10.6 Three-Dimensional Dynamics Model
201(2)
References
203(4)
PART II Control Design
Chapter 11 Introduction to Control Theory and Methods
207(32)
11.1 Second-Order Linear Systems
207(8)
11.2 State-Space Model
215(1)
11.3 State Observer
216(4)
11.4 Kalman Filter
220(8)
11.5 Lyapunov Stability Theory
228(5)
11.6 Linear Quadratic Optimal Control
233(3)
11.7 Linear Quadratic Optimal Control with Output Target
236(2)
References
238(1)
Chapter 12 Wheel Slip Control
239(12)
12.1 Brake Slip Control
241(2)
12.2 Tractive Slip Control
243(3)
12.3 Speed Differential Control By Toque Vectoring
246(3)
References
249(2)
Chapter 13 Vehicle Motion Control
251(18)
13.1 Vehicle Speed Control
251(7)
13.2 Path-Following Control
258(9)
13.2.1 Cascade Control Design
260(2)
13.2.2 Inner-Loop Control via Front Steering and Rear Torque Vectoring
262(3)
13.2.3 Inner-Loop Control via Front and Rear Steering
265(2)
References
267(2)
Chapter 14 Vehicle Stability Control
269(46)
14.1 Yaw Stability Control
269(25)
14.1.1 Yaw Rate Target
269(3)
14.1.2 State Feedback Control
272(3)
14.1.3 Robust Yaw Stability Controller
275(4)
14.1.4 Practical Implementation of Control Inputs
279(6)
14.1.5 A Case Study of Lane-Change Maneuver
285(6)
14.1.6 Yaw Stability Control in Autonomous Vehicle
291(3)
14.2 Rollover Control
294(9)
14.2.1 Rollover Analysis
294(3)
14.2.2 Roll Angle Estimation
297(1)
14.2.3 Rollover Control
298(5)
14.3 Stabilization Of Vehicle-Trailer System
303(10)
14.3.1 Trailer Stabilization Through Rear Steering
303(5)
14.3.2 Hitch Angle Estimation
308(1)
14.3.3 Simulation and Analysis of Trailer Stabilization
309(4)
References
313(2)
Appendix A LabVIEW Implementations for Simulation
315(12)
A.1 Labview Program Of Example 4.1
315(1)
A.2 Labview Program Of Example 4.2
316(2)
A.3 Labview Program Of Example 9.2
318(2)
A.4 Labview Program Of Example 9.3
320(2)
A.5 Labview Program Of Example 13.1
322(2)
A.6 Labview Program To Figure 14.26
324(3)
Bibliography 327(2)
Index 329
Jingsheng Yu is senior director of design and process engineering at Flex Ltd, Novi, Michigan. Vladimir Vantsevich is a professor at the University of Alabama at Birmingham.