Muutke küpsiste eelistusi

E-raamat: Data Science: 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, Macao, China, September 27-30, 2024, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 80,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This three-volume set CCIS 2213-2215 constitutes the refereed proceedings of the 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, held in Macau, China, during September 2730, 2024.





The 74 full papers and 3 short papers presented in these three volumes were carefully reviewed and selected from 249 submissions.





The papers are organized in the following topical sections:





Part I: Novel methods or tools used in big data and its applications; applications of data science.





Part II: Education research, methods and materials for data science and engine; data security and privacy; big data mining and knowledge management.





Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis.
.- Novel methods or tools used in big data and its applications.



.- Quantitative Analysis of the Factors Influencing Macao's Tourism Industry:
A Gray Correlation Approach.



.- Multi-AUV Hunting Strategy Based on the Lions Group Algorithm.



.- Study on the Coupled and Coordinated Relationships between Social Security
and Economic and Social Development in Macao.



.- A Segmentation Network for Coastal Cegetation Guided by Category-Wighted
Information from UAV Perspective Based on SAM.



.- GAN-Based Defogging and Multiscale Fusion Approach for UAV-Based Seagrass
Bed Imagery Semantic segmentation in challenging marine environments.



.- SEBWatcher: Visual Analysis System for Subject, Environment and Behavior
in Traffic Scenes.



.- Research on the Promotion and Enhancement Paths of Hainan Wenbifeng Pangu
Cultural Tourist Areas Based on Network Text Analysis.



.- Based on Network Text Analysis: A Study on the Promotion Strategy of a
Boundary Island for Lingshui Tourism Experience.



.- Deep Reinforcement Learning Based on Greed for the Critical Cross section
Identification Problem.



.- Intrusion Detection Based on Feature Selection and Transformer BiGRU.



.- Discussion on the construction of power 3D design platform for nested
virtualized hybrid cloud.



.- Applications of Data Science.



.- Application of Deep Learning Models Based on Chaos Modeling in Power
Internet of Things Forecasting Tasks.



.- Study on compatibility of vegetable insulating oils and mineral insulating
oils for transformer based on molecular simulation methods.



.- Collaborative optimization scheduling model for clean energy in microgrid
clusters.



.- A Distributed Multi-Microgrid Intelligent Scheduling for New Power
System.



.- Development and Application of Intelligent Calculation Analysis Platform
For Large Power Grid.



.- A Deep Reinforcement Learning Control Strategy with Integrated Droop
Control for Parallel DC-DC Buck Converters with CPLs.



.- MST: A Comprehensive Approach for Short-Term Power Load Forecasting Based
on Data Decomposition, Local and Global Modeling.



.- An Approach to Identification Model for Electric Event Based on Clustering
Analysis.



.- Research on Prediction Models and Optimization Methods for Electrical
Current Consumption of Users.



.- Re-GNN: ANewModelforPredicting Circuit Reliability Degradation.



.- TRANSFORMER OIL TEMPERATURE PREDICTION METHOD BASED ON CAUSAL DISCOVERY
AND GNN-LSTM MODEL.



.- The Electronic Power Data Traceability Model Based on Hybrid Consensus and
IPFS.



.- Research on complementation of new energy spot and medium to long-term
transactions based on blockchain·



.- Knowledge-driven Calculating Method for Transmission Section Limit of
Large Power Grid.