Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 63,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries.

Data Science for Librarians introduces data science to students and practitioners in library services. Writing for academic, public, and school library managers; library science students; and library and information science educators, authors Yunfei Du and Hammad Rauf Khan provide a thorough overview of conceptual and practical tools for data librarian practice.

Partially due to how quickly data science evolves, libraries have yet to recognize core competencies and skills required to perform the job duties of a data librarian. As society transitions from the information age into the era of big data, librarians and information professionals require new knowledge and skills to stay current and take on new job roles, such as data librarianship. Skills such as data curation, research data management, statistical analysis, business analytics, visualization, smart city data, and learning analytics are relevant in library services today and will become increasingly so in the near future. This text serves as a tool for library and information science students and educators working on data science curriculum design.


  • Reviews fundamental concepts and principles of data science

  • Offers a practical overview of tools and software
  • Highlights skills and services needed in the 21st-century academic library
  • Covers the entire research data life cycle and the librarian's role at each stage
    • Provides insight into how library science and data science intersect


  • "This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries"--

    Arvustused

    A worthy contribution to the dynamic field of data science, suited for library professionals in all types of libraries. * Library Journal *

    Muu info

    This unique textbook intersects traditional library science with data science principles that readers will find useful in implementing or improving data services within their libraries.
    1 More Data, More Problems
    1(16)
    What Is Data?
    2(3)
    Quantitative vs. Qualitative Data
    3(1)
    Digital vs. Nondigital Data
    3(1)
    What Is Big Data?
    4(1)
    How Big Data Works
    5(1)
    Problems with Having Too Much Data
    5(1)
    Data and Information Are Different
    5(1)
    Data Saturation
    6(1)
    Confirmation Bias and Signal Error
    6(1)
    Effects on Society
    6(2)
    Impact on Health Services
    6(1)
    Government Planning
    7(1)
    News and Media Consumption
    7(1)
    Sports
    7(1)
    Big Data and the Data Deluge
    7(1)
    Open Data
    8(2)
    Open Government Data
    9(1)
    Data.gov
    9(1)
    Principles of Open Government Data
    10(1)
    Research Data in Academic Libraries
    10(2)
    Data Literacy Concepts
    11(1)
    Data Life Cycle
    11(1)
    Era of Big Data
    12(2)
    Looking Ahead
    14(1)
    References
    14(3)
    2 A New Strand of Librarianship
    17(14)
    Data-Driven Decision Making
    17(2)
    History of Data in Academic Libraries
    19(1)
    What Does Big Data Mean for Libraries?
    20(1)
    Data Librarianship
    21(2)
    Research Data Services
    23(5)
    Data Management Plans
    24(2)
    Management: GIS
    26(2)
    Conclusion
    28(1)
    References
    28(3)
    3 Data Creation and Collection
    31(12)
    Surveys
    31(1)
    Online Tools
    32(1)
    Social Media Data
    33(1)
    Data Noise
    33(2)
    Data Acquisitions
    35(1)
    Disadvantages of Big Data Collection
    36(1)
    Big Data Analytics
    37(2)
    Conclusion
    39(1)
    References
    40(3)
    4 Data for the Academic Librarian
    43(12)
    E-Science and E-Research
    44(1)
    Data Reference Interview
    45(3)
    Data Storage and Archiving
    48(1)
    Data Repositories
    49(2)
    References
    51(4)
    5 Research Data Services and the Library Ecosystem
    55(10)
    What Is RDS?
    56(1)
    How Much of the Research Data Life Cycle is Represented within RDS?
    56(3)
    Who Works in RDS?
    59(1)
    Data Literacy
    60(3)
    References
    63(2)
    6 Data Sources
    65(16)
    Data and the Library Professional
    65(1)
    Open Government Data
    66(1)
    Data Repositories
    67(1)
    Metadata
    68(1)
    Data Citation
    69(1)
    Data Collection and Harvesting
    70(1)
    Data Extraction, Transformation, and Loading
    71(1)
    Data Mining
    72(4)
    Data Cleaning
    72(1)
    Data Mining and Analysis for Librarians
    73(2)
    Data Mining: Techniques
    75(1)
    Data Mining: Advantages and Disadvantages
    75(1)
    Data Analysis and Librarians: An Overview
    76(1)
    Conclusion
    77(1)
    References
    78(3)
    7 Data Curation (Archiving/Preservation)
    81(10)
    Data Curation Process
    81(1)
    Data Stewardship
    82(1)
    Metadata
    83(2)
    Data Access and Reuse
    85(1)
    Data Sharing
    86(1)
    Data Quality
    86(2)
    Conclusion
    88(1)
    References
    88(3)
    8 Data Storage, Management, and Retrieval
    91(14)
    Big Data Storage Solutions
    91(4)
    High-Performance Computing
    92(1)
    Variety of Big Data Storage Patterns
    93(1)
    Social Networking Data
    94(1)
    Cloud Computing
    95(3)
    Apache Hadoop
    96(1)
    Common Cloud Storage Solutions
    96(1)
    Privacy Concerns on Cloud Computing
    97(1)
    Big Data Management
    98(2)
    Data Cleaning
    98(1)
    Big Data Security and Policies
    99(1)
    Managing the Velocity of Big Data
    100(1)
    Conclusion
    100(1)
    References
    101(4)
    9 Data Analysis and Visualization
    105(16)
    Big Data Analysis
    105(2)
    Descriptive Analytics
    105(1)
    Diagnostic Analytics
    106(1)
    Predictive Analytics
    106(1)
    Prescriptive Analytics
    107(1)
    Statistics for Data Science
    107(4)
    Hypothesis Testing and Statistical Significance
    107(1)
    Probability Distributions
    108(1)
    Correlation
    109(1)
    Regression
    110(1)
    Data Visualization
    111(6)
    Brief History of Data Visualization
    111(1)
    Data Visualization Methods and Tools
    112(2)
    Text Visualization
    114(1)
    Data Visualization Applications
    115(2)
    Conclusion
    117(1)
    References
    117(4)
    10 Data Ethics and Policies
    121(10)
    Data Security
    122(1)
    User Privacy and Data Retention
    123(2)
    Data Privacy
    125(1)
    Data Ethics
    126(1)
    Copyright and Ownership
    127(1)
    Personal Information Data in Libraries
    128(1)
    Conclusion
    129(1)
    References
    130(1)
    11 Data for Public Libraries and Special Libraries
    131(14)
    Smart Cities Initiatives
    131(2)
    Open Government Initiatives
    133(1)
    Internet of Things and Privacy Concerns
    134(1)
    Internet of Things
    134(1)
    Challenges
    135(1)
    Census Data
    135(1)
    Role of Public Libraries in the Era of Big Data
    136(2)
    Public Libraries Can Use Big Data to Address Local Needs
    136(1)
    Librarians Are Advocates for Privacy of Citizens
    137(1)
    Data Librarians in Public Libraries
    137(1)
    Public Libraries as Learning Centers for Teens
    137(1)
    Role of Special Libraries in the Era of Big Data
    138(3)
    Law Librarians
    139(1)
    Corporate Libraries
    140(1)
    Medical Librarians
    140(1)
    Conclusion
    141(1)
    References
    141(4)
    12 Conclusion: Library, Information, and Data Science
    145(12)
    Data as an Infrastructure for Society
    145(2)
    Data and Information
    146(1)
    Data as Public Good
    146(1)
    Data as the Driving Force for the Economy
    146(1)
    Data for Governance
    147(1)
    Librarians and Data Life Cycle
    147(2)
    New Job Titles for Librarians
    148(1)
    Librarians in Data Life Cycle
    148(1)
    Data Analysis Skill Sets for Librarians
    149(2)
    Data Ingestion
    149(1)
    Data Curation
    149(1)
    Data Visualization
    149(1)
    Data Analytics
    150(1)
    Data Literacy for Library Users
    151(2)
    Data Literacy in Academic Settings
    151(1)
    Data Literacy for Public Library Users
    151(2)
    Conclusion
    153(1)
    References
    153(4)
    Glossary 157(8)
    Index 165
    Yunfei Du is professor of library science and associate dean in the College of Information at the University of North Texas. He has worked as a systems librarian and published in many academic journals.

    Hammad Rauf Khan is the director of library services at the Columbus College of Art & Design.