Muutke küpsiste eelistusi

E-raamat: Decision Making Under Uncertainty

(Stanford University), With , With (MIT Lincoln Laboratory), With (MIT Lincoln Laboratory), With (Massachusetts Institute of Technology), With , With , With , With (University of New Hampshire)
  • Formaat - PDF+DRM
  • Hind: 74,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Many important problems involve decision making under uncertainty -- that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance.

Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance.

Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Preface xix
About the Authors xxi
Acknowledgments xxv
1 Introduction
1(8)
1.1 Decision Making
1(1)
1.2 Example Applications
2(2)
1.2.1 Traffic Alert and Collision Avoidance System
2(1)
1.2.2 Unmanned Aircraft Persistent Surveillance
3(1)
1.3 Methods for Designing Decision Agents
4(1)
1.3.1 Explicit Programming
4(1)
1.3.2 Supervised Learning
4(1)
1.3.3 Optimization
5(1)
1.3.4 Planning
5(1)
1.3.5 Reinforcement Learning
5(1)
1.4 Overview
5(2)
1.5 Further Reading
7(1)
References
7(2)
I Theory 9(180)
2 Probabilistic Models
11(46)
2.1 Representation
11(14)
2.1.1 Degrees of Belief and Probability
12(1)
2.1.2 Probability Distributions
13(3)
2.1.3 Joint Distributions
16(1)
2.1.4 Bayesian Network Representation
17(2)
2.1.5 Conditional Independence
19(2)
2.1.6 Hybrid Bayesian Networks
21(2)
2.1.7 Temporal Models
23(2)
2.2 Inference
25(15)
2.2.1 Inference for Classification
26(3)
2.2.2 Inference in Temporal Models
29(1)
2.2.3 Exact Inference
30(3)
2.2.4 Complexity of Exact Inference
33(2)
2.2.5 Approximate Inference
35(5)
2.3 Parameter Learning
40(6)
2.3.1 Maximum Likelihood Parameter Learning
40(2)
2.3.2 Bayesian Parameter Learning
42(3)
2.3.3 Nonparametric Learning
45(1)
2.4 Structure Learning
46(6)
2.4.1 Bayesian Structure Scoring
46(2)
2.4.2 Directed Graph Search
48(3)
2.4.3 Markov Equivalence Classes
51(1)
2.4.4 Partially Directed Graph Search
52(1)
2.5 Summary
52(2)
2.6 Further Reading
54(1)
References
54(3)
3 Decision Problems
57(20)
3.1 Utility Theory
57(7)
3.1.1 Constraints on Rational Preferences
58(1)
3.1.2 Utility Functions
58(1)
3.1.3 Maximum Expected Utility Principle
59(1)
3.1.4 Utility Elicitation
60(1)
3.1.5 Utility of Money
60(1)
3.1.6 Multiple Variable Utility Functions
61(2)
3.1.7 Irrationality
63(1)
3.2 Decision Networks
64(4)
3.2.1 Evaluating Decision Networks
65(1)
3.2.2 Value of Information
66(1)
3.2.3 Creating Decision Networks
67(1)
3.3 Games
68(4)
3.3.1 Dominant Strategy Equilibrium
69(1)
3.3.2 Nash Equilibrium
70(1)
3.3.3 Behavioral Game Theory
71(1)
3.4 Summary
72(1)
3.5 Further Reading
72(2)
References
74(3)
4 Sequential Problems
77(36)
4.1 Formulation
77(2)
4.1.1 Markov Decision Processes
77(1)
4.1.2 Utility and Reward
78(1)
4.2 Dynamic Programming
79(10)
4.2.1 Policies and Utilities
79(1)
4.2.2 Policy Evaluation
80(1)
4.2.3 Policy Iteration
81(1)
4.2.4 Value Iteration
81(2)
4.2.5 Grid World Example
83(1)
4.2.6 Asynchronous Value Iteration
84(1)
4.2.7 Closed- and Open-Loop Planning
84(5)
4.3 Structured Representations
89(2)
4.3.1 Factored Markov Decision Processes
89(1)
4.3.2 Structured Dynamic Programming
89(2)
4.4 Linear Representations
91(2)
4.5 Approximate Dynamic Programming
93(6)
4.5.1 Local Approximation
93(3)
4.5.2 Global Approximation
96(3)
4.6 Online Methods
99(4)
4.6.1 Forward Search
99(1)
4.6.2 Branch and Bound Search
100(1)
4.6.3 Sparse Sampling
101(1)
4.6.4 Monte Carlo Tree Search
102(1)
4.7 Direct Policy Search
103(5)
4.7.1 Objective Function
104(1)
4.7.2 Local Search Methods
104(1)
4.7.3 Cross Entropy Methods
105(1)
4.7.4 Evolutionary Methods
106(2)
4.8 Summary
108(1)
4.9 Further Reading
108(2)
References
110(3)
5 Model Uncertainty
113(20)
5.1 Exploration and Exploitation
113(3)
5.1.1 Multi-Armed Bandit Problems
113(1)
5.1.2 Bayesian Model Estimation
114(1)
5.1.3 Ad Hoc Exploration Strategies
115(1)
5.1.4 Optimal Exploration Strategies
115(1)
5.2 Maximum Likelihood Model-Based Methods
116(2)
5.2.1 Randomized Updates
117(1)
5.2.2 Prioritized Updates
118(1)
5.3 Bayesian Model-Based Methods
118(3)
5.3.1 Problem Structure
119(1)
5.3.2 Beliefs over Model Parameters
119(1)
5.3.3 Bayes-Adaptive Markov Decision Processes
120(1)
5.3.4 Solution Methods
121(1)
5.4 Model-Free Methods
121(3)
5.4.1 Incremental Estimation
121(1)
5.4.2 Q-Learning
122(1)
5.4.3 Sarsa
123(1)
5.4.4 Eligibility Traces
123(1)
5.5 Generalization
124(5)
5.5.1 Local Approximation
125(1)
5.5.2 Global Approximation
126(2)
5.5.3 Abstraction Methods
128(1)
5.6 Summary
129(1)
5.7 Further Reading
129(1)
References
130(3)
6 State Uncertainty
133(26)
6.1 Formulation
133(3)
6.1.1 Example Problem
133(1)
6.1.2 Partially Observable Markov Decision Processes
134(1)
6.1.3 Policy Execution
134(1)
6.1.4 Belief-State Markov Decision Processes
134(2)
6.2 Belief Updating
136(4)
6.2.1 Discrete State Filter
136(2)
6.2.2 Linear-Gaussian Filter
138(1)
6.2.3 Particle Filter
138(2)
6.3 Exact Solution Methods
140(4)
6.3.1 Alpha Vectors
140(1)
6.3.2 Conditional Plans
141(2)
6.3.3 Value Iteration
143(1)
6.4 Offline Methods
144(5)
6.4.1 Fully Observable Value Approximation
144(1)
6.4.2 Fast Informed Bound
144(1)
6.4.3 Point-Based Value Iteration
145(1)
6.4.4 Randomized Point-Based Value Iteration
146(1)
6.4.5 Point Selection
147(2)
6.4.6 Linear Policies
149(1)
6.5 Online Methods
149(6)
6.5.1 Lookahead with Approximate Value Function
149(1)
6.5.2 Forward Search
150(1)
6.5.3 Branch and Bound
151(1)
6.5.4 Monte Carlo Tree Search
152(3)
6.6 Summary
155(1)
6.7 Further Reading
155(1)
References
156(3)
7 Cooperative Decision Making
159(30)
7.1 Formulation
159(5)
7.1.1 Decentralized POMDPs
159(2)
7.1.2 Example Problem
161(1)
7.1.3 Solution Representations
162(2)
7.2 Properties
164(2)
7.2.1 Differences with POMDPs
164(1)
7.2.2 Dec-POMDP Complexity
165(1)
7.2.3 Generalized Belief States
165(1)
7.3 Notable Subclasses
166(4)
7.3.1 Dec-MDPs
166(2)
7.3.2 ND-POMDPs
168(1)
7.3.3 MMDPs
169(1)
7.4 Exact Solution Methods
170(7)
7.4.1 Dynamic Programming
170(2)
7.4.2 Heuristic Search
172(3)
7.4.3 Policy Iteration
175(2)
7.5 Approximate Solution Methods
177(1)
7.5.1 Memory-Bounded Dynamic Programming
177(1)
7.5.2 Joint Equilibrium Search
178(1)
7.6 Communication
178(2)
7.7 Summary
180(1)
7.8 Further Reading
180(2)
References
182(7)
II Application 189(128)
8 Probabilistic Surveillance Video Search
191(38)
8.1 Attribute-Based Person Search
191(4)
8.1.1 Applications
192(1)
8.1.2 Person Detection
193(1)
8.1.3 Retrieval and Scoring
194(1)
8.2 Probabilistic Appearance Model
195(11)
8.2.1 Observed States
195(2)
8.2.2 Basic Model Structure
197(5)
8.2.3 Model Extensions
202(4)
8.3 Learning and Inference Techniques
206(11)
8.3.1 Parameter Learning
207(4)
8.3.2 Hidden State Inference
211(3)
8.3.3 Scoring Algorithm
214(3)
8.4 Performance
217(6)
8.4.1 Search Accuracy
217(3)
8.4.2 Search Timing
220(3)
8.5 Interactive Search Tool
223(2)
8.6 Summary
225(2)
References
227(2)
9 Dynamic Models for Speech Applications
229(20)
9.1 Modeling Speech Signals
229(3)
9.1.1 Feature Extraction
230(1)
9.1.2 Hidden Markov Models
230(1)
9.1.3 Gaussian Mixture Models
231(1)
9.1.4 Expectation-Maximization Algorithm
232(1)
9.2 Speech Recognition
232(3)
9.3 Topic Identification
235(1)
9.4 Language Recognition
236(2)
9.5 Speaker Identification
238(4)
9.5.1 Forensic Speaker Recognition
240(2)
9.6 Machine Translation
242(1)
9.7 Summary
243(1)
References
243(6)
10 Optimized Airborne Collision Avoidance
249(28)
10.1 Airborne Collision Avoidance Systems
249(4)
10.1.1 Traffic Alert and Collision Avoidance System
250(1)
10.1.2 Limitations of Existing System
251(1)
10.1.3 Unmanned Aircraft Sense and Avoid
252(1)
10.1.4 Airborne Collision Avoidance System X
253(1)
10.2 Collision Avoidance Problem Formulation
253(6)
10.2.1 Resolution Advisories
253(2)
10.2.2 Dynamic Model
255(1)
10.2.3 Reward Function
256(2)
10.2.4 Dynamic Programming
258(1)
10.3 State Estimation
259(2)
10.3.1 Sensor Error
259(1)
10.3.2 Pilot Response
260(1)
10.3.3 Time to Potential Collision
260(1)
10.4 Real-Time Execution
261(4)
10.4.1 Online Costs
261(1)
10.4.2 Multiple Threats
262(1)
10.4.3 Traffic Alerts
263(2)
10.5 Evaluation
265(8)
10.5.1 Safety Analysis
265(2)
10.5.2 Operational Suitability and Acceptability
267(4)
10.5.3 Parameter Tuning
271(1)
10.5.4 Flight Test
272(1)
10.6 Summary
273(1)
References
274(3)
11 Multiagent Planning for Persistent Surveillance
277(14)
11.1 Mission Description
277(1)
11.2 Centralized Problem Formulation
278(2)
11.2.1 State Space
278(1)
11.2.2 Action Space
279(1)
11.2.3 State Transition Model
279(1)
11.2.4 Reward Function
280(1)
11.3 Decentralized Approximate Formulations
280(2)
11.3.1 Factored Decomposition
280(1)
11.3.2 Group Aggregate Decomposition
281(1)
11.3.3 Planning
281(1)
11.4 Model Learning
282(3)
11.5 Flight Test
285(1)
11.6 Summary
286(3)
References
289(2)
12 Integrating Automation with Humans
291(26)
12.1 Human Capabilities and Coping
291(5)
12.1.1 Perceptual and Cognitive Capabilities
291(3)
12.1.2 Naturalistic Decision Making
294(2)
12.2 Considering the Human in Design
296(12)
12.2.1 Trust and Value of Decision Logic Transparency
296(4)
12.2.2 Designing for Different Levels of Certainty
300(5)
12.2.3 Supporting Decisions over Long Timescales
305(3)
12.3 A Systems View of Implementation
308(5)
12.3.1 Interface, Training, and Procedures
308(3)
12.3.2 Measuring Decision Support Effectiveness
311(2)
12.3.3 Organization Influences on System Effectiveness
313(1)
12.4 Summary
313(1)
References
314(3)
Index 317