Preface |
|
xix | |
About the Authors |
|
xxi | |
Acknowledgments |
|
xxv | |
|
|
1 | (8) |
|
|
1 | (1) |
|
|
2 | (2) |
|
1.2.1 Traffic Alert and Collision Avoidance System |
|
|
2 | (1) |
|
1.2.2 Unmanned Aircraft Persistent Surveillance |
|
|
3 | (1) |
|
1.3 Methods for Designing Decision Agents |
|
|
4 | (1) |
|
1.3.1 Explicit Programming |
|
|
4 | (1) |
|
1.3.2 Supervised Learning |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
1.3.5 Reinforcement Learning |
|
|
5 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (2) |
I Theory |
|
9 | (180) |
|
|
11 | (46) |
|
|
11 | (14) |
|
2.1.1 Degrees of Belief and Probability |
|
|
12 | (1) |
|
2.1.2 Probability Distributions |
|
|
13 | (3) |
|
2.1.3 Joint Distributions |
|
|
16 | (1) |
|
2.1.4 Bayesian Network Representation |
|
|
17 | (2) |
|
2.1.5 Conditional Independence |
|
|
19 | (2) |
|
2.1.6 Hybrid Bayesian Networks |
|
|
21 | (2) |
|
|
23 | (2) |
|
|
25 | (15) |
|
2.2.1 Inference for Classification |
|
|
26 | (3) |
|
2.2.2 Inference in Temporal Models |
|
|
29 | (1) |
|
|
30 | (3) |
|
2.2.4 Complexity of Exact Inference |
|
|
33 | (2) |
|
2.2.5 Approximate Inference |
|
|
35 | (5) |
|
|
40 | (6) |
|
2.3.1 Maximum Likelihood Parameter Learning |
|
|
40 | (2) |
|
2.3.2 Bayesian Parameter Learning |
|
|
42 | (3) |
|
2.3.3 Nonparametric Learning |
|
|
45 | (1) |
|
|
46 | (6) |
|
2.4.1 Bayesian Structure Scoring |
|
|
46 | (2) |
|
2.4.2 Directed Graph Search |
|
|
48 | (3) |
|
2.4.3 Markov Equivalence Classes |
|
|
51 | (1) |
|
2.4.4 Partially Directed Graph Search |
|
|
52 | (1) |
|
|
52 | (2) |
|
|
54 | (1) |
|
|
54 | (3) |
|
|
57 | (20) |
|
|
57 | (7) |
|
3.1.1 Constraints on Rational Preferences |
|
|
58 | (1) |
|
|
58 | (1) |
|
3.1.3 Maximum Expected Utility Principle |
|
|
59 | (1) |
|
3.1.4 Utility Elicitation |
|
|
60 | (1) |
|
|
60 | (1) |
|
3.1.6 Multiple Variable Utility Functions |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
64 | (4) |
|
3.2.1 Evaluating Decision Networks |
|
|
65 | (1) |
|
3.2.2 Value of Information |
|
|
66 | (1) |
|
3.2.3 Creating Decision Networks |
|
|
67 | (1) |
|
|
68 | (4) |
|
3.3.1 Dominant Strategy Equilibrium |
|
|
69 | (1) |
|
|
70 | (1) |
|
3.3.3 Behavioral Game Theory |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (2) |
|
|
74 | (3) |
|
|
77 | (36) |
|
|
77 | (2) |
|
4.1.1 Markov Decision Processes |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (10) |
|
4.2.1 Policies and Utilities |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
81 | (2) |
|
|
83 | (1) |
|
4.2.6 Asynchronous Value Iteration |
|
|
84 | (1) |
|
4.2.7 Closed- and Open-Loop Planning |
|
|
84 | (5) |
|
4.3 Structured Representations |
|
|
89 | (2) |
|
4.3.1 Factored Markov Decision Processes |
|
|
89 | (1) |
|
4.3.2 Structured Dynamic Programming |
|
|
89 | (2) |
|
4.4 Linear Representations |
|
|
91 | (2) |
|
4.5 Approximate Dynamic Programming |
|
|
93 | (6) |
|
4.5.1 Local Approximation |
|
|
93 | (3) |
|
4.5.2 Global Approximation |
|
|
96 | (3) |
|
|
99 | (4) |
|
|
99 | (1) |
|
4.6.2 Branch and Bound Search |
|
|
100 | (1) |
|
|
101 | (1) |
|
4.6.4 Monte Carlo Tree Search |
|
|
102 | (1) |
|
|
103 | (5) |
|
|
104 | (1) |
|
4.7.2 Local Search Methods |
|
|
104 | (1) |
|
4.7.3 Cross Entropy Methods |
|
|
105 | (1) |
|
4.7.4 Evolutionary Methods |
|
|
106 | (2) |
|
|
108 | (1) |
|
|
108 | (2) |
|
|
110 | (3) |
|
|
113 | (20) |
|
5.1 Exploration and Exploitation |
|
|
113 | (3) |
|
5.1.1 Multi-Armed Bandit Problems |
|
|
113 | (1) |
|
5.1.2 Bayesian Model Estimation |
|
|
114 | (1) |
|
5.1.3 Ad Hoc Exploration Strategies |
|
|
115 | (1) |
|
5.1.4 Optimal Exploration Strategies |
|
|
115 | (1) |
|
5.2 Maximum Likelihood Model-Based Methods |
|
|
116 | (2) |
|
|
117 | (1) |
|
5.2.2 Prioritized Updates |
|
|
118 | (1) |
|
5.3 Bayesian Model-Based Methods |
|
|
118 | (3) |
|
|
119 | (1) |
|
5.3.2 Beliefs over Model Parameters |
|
|
119 | (1) |
|
5.3.3 Bayes-Adaptive Markov Decision Processes |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (3) |
|
5.4.1 Incremental Estimation |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (5) |
|
5.5.1 Local Approximation |
|
|
125 | (1) |
|
5.5.2 Global Approximation |
|
|
126 | (2) |
|
5.5.3 Abstraction Methods |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (3) |
|
|
133 | (26) |
|
|
133 | (3) |
|
|
133 | (1) |
|
6.1.2 Partially Observable Markov Decision Processes |
|
|
134 | (1) |
|
|
134 | (1) |
|
6.1.4 Belief-State Markov Decision Processes |
|
|
134 | (2) |
|
|
136 | (4) |
|
6.2.1 Discrete State Filter |
|
|
136 | (2) |
|
6.2.2 Linear-Gaussian Filter |
|
|
138 | (1) |
|
|
138 | (2) |
|
6.3 Exact Solution Methods |
|
|
140 | (4) |
|
|
140 | (1) |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
144 | (5) |
|
6.4.1 Fully Observable Value Approximation |
|
|
144 | (1) |
|
6.4.2 Fast Informed Bound |
|
|
144 | (1) |
|
6.4.3 Point-Based Value Iteration |
|
|
145 | (1) |
|
6.4.4 Randomized Point-Based Value Iteration |
|
|
146 | (1) |
|
|
147 | (2) |
|
|
149 | (1) |
|
|
149 | (6) |
|
6.5.1 Lookahead with Approximate Value Function |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
6.5.4 Monte Carlo Tree Search |
|
|
152 | (3) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
156 | (3) |
|
7 Cooperative Decision Making |
|
|
159 | (30) |
|
|
159 | (5) |
|
7.1.1 Decentralized POMDPs |
|
|
159 | (2) |
|
|
161 | (1) |
|
7.1.3 Solution Representations |
|
|
162 | (2) |
|
|
164 | (2) |
|
7.2.1 Differences with POMDPs |
|
|
164 | (1) |
|
7.2.2 Dec-POMDP Complexity |
|
|
165 | (1) |
|
7.2.3 Generalized Belief States |
|
|
165 | (1) |
|
|
166 | (4) |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (1) |
|
7.4 Exact Solution Methods |
|
|
170 | (7) |
|
7.4.1 Dynamic Programming |
|
|
170 | (2) |
|
|
172 | (3) |
|
|
175 | (2) |
|
7.5 Approximate Solution Methods |
|
|
177 | (1) |
|
7.5.1 Memory-Bounded Dynamic Programming |
|
|
177 | (1) |
|
7.5.2 Joint Equilibrium Search |
|
|
178 | (1) |
|
|
178 | (2) |
|
|
180 | (1) |
|
|
180 | (2) |
|
|
182 | (7) |
II Application |
|
189 | (128) |
|
8 Probabilistic Surveillance Video Search |
|
|
191 | (38) |
|
8.1 Attribute-Based Person Search |
|
|
191 | (4) |
|
|
192 | (1) |
|
|
193 | (1) |
|
8.1.3 Retrieval and Scoring |
|
|
194 | (1) |
|
8.2 Probabilistic Appearance Model |
|
|
195 | (11) |
|
|
195 | (2) |
|
8.2.2 Basic Model Structure |
|
|
197 | (5) |
|
|
202 | (4) |
|
8.3 Learning and Inference Techniques |
|
|
206 | (11) |
|
|
207 | (4) |
|
8.3.2 Hidden State Inference |
|
|
211 | (3) |
|
|
214 | (3) |
|
|
217 | (6) |
|
|
217 | (3) |
|
|
220 | (3) |
|
8.5 Interactive Search Tool |
|
|
223 | (2) |
|
|
225 | (2) |
|
|
227 | (2) |
|
9 Dynamic Models for Speech Applications |
|
|
229 | (20) |
|
9.1 Modeling Speech Signals |
|
|
229 | (3) |
|
|
230 | (1) |
|
9.1.2 Hidden Markov Models |
|
|
230 | (1) |
|
9.1.3 Gaussian Mixture Models |
|
|
231 | (1) |
|
9.1.4 Expectation-Maximization Algorithm |
|
|
232 | (1) |
|
|
232 | (3) |
|
|
235 | (1) |
|
|
236 | (2) |
|
9.5 Speaker Identification |
|
|
238 | (4) |
|
9.5.1 Forensic Speaker Recognition |
|
|
240 | (2) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (6) |
|
10 Optimized Airborne Collision Avoidance |
|
|
249 | (28) |
|
10.1 Airborne Collision Avoidance Systems |
|
|
249 | (4) |
|
10.1.1 Traffic Alert and Collision Avoidance System |
|
|
250 | (1) |
|
10.1.2 Limitations of Existing System |
|
|
251 | (1) |
|
10.1.3 Unmanned Aircraft Sense and Avoid |
|
|
252 | (1) |
|
10.1.4 Airborne Collision Avoidance System X |
|
|
253 | (1) |
|
10.2 Collision Avoidance Problem Formulation |
|
|
253 | (6) |
|
10.2.1 Resolution Advisories |
|
|
253 | (2) |
|
|
255 | (1) |
|
|
256 | (2) |
|
10.2.4 Dynamic Programming |
|
|
258 | (1) |
|
|
259 | (2) |
|
|
259 | (1) |
|
|
260 | (1) |
|
10.3.3 Time to Potential Collision |
|
|
260 | (1) |
|
|
261 | (4) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (2) |
|
|
265 | (8) |
|
|
265 | (2) |
|
10.5.2 Operational Suitability and Acceptability |
|
|
267 | (4) |
|
|
271 | (1) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (3) |
|
11 Multiagent Planning for Persistent Surveillance |
|
|
277 | (14) |
|
|
277 | (1) |
|
11.2 Centralized Problem Formulation |
|
|
278 | (2) |
|
|
278 | (1) |
|
|
279 | (1) |
|
11.2.3 State Transition Model |
|
|
279 | (1) |
|
|
280 | (1) |
|
11.3 Decentralized Approximate Formulations |
|
|
280 | (2) |
|
11.3.1 Factored Decomposition |
|
|
280 | (1) |
|
11.3.2 Group Aggregate Decomposition |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (3) |
|
|
285 | (1) |
|
|
286 | (3) |
|
|
289 | (2) |
|
12 Integrating Automation with Humans |
|
|
291 | (26) |
|
12.1 Human Capabilities and Coping |
|
|
291 | (5) |
|
12.1.1 Perceptual and Cognitive Capabilities |
|
|
291 | (3) |
|
12.1.2 Naturalistic Decision Making |
|
|
294 | (2) |
|
12.2 Considering the Human in Design |
|
|
296 | (12) |
|
12.2.1 Trust and Value of Decision Logic Transparency |
|
|
296 | (4) |
|
12.2.2 Designing for Different Levels of Certainty |
|
|
300 | (5) |
|
12.2.3 Supporting Decisions over Long Timescales |
|
|
305 | (3) |
|
12.3 A Systems View of Implementation |
|
|
308 | (5) |
|
12.3.1 Interface, Training, and Procedures |
|
|
308 | (3) |
|
12.3.2 Measuring Decision Support Effectiveness |
|
|
311 | (2) |
|
12.3.3 Organization Influences on System Effectiveness |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
314 | (3) |
Index |
|
317 | |