Muutke küpsiste eelistusi

E-raamat: Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty. The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic technique

s for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.

Active learning.- Semi-supervised learning.- Reinforcement learning.- Domain adaptation and transfer learning.- Crowd-sourcing annotations and fusion of labels from different sources.- Data augmentation.- Modelling of label uncertainty.- Visualization and human-computer interaction.- Image description.- Medical imaging-based diagnosis.- Medical signal-based diagnosis.- Medical image reconstruction and model selection using deep learning techniques.- Meta-heuristic techniques for fine-tuning.- Parameter in deep learning-based architectures.- Applications based on deep learning techniques.
Deep Learning in Medical Image Analysis
HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs
3(9)
Xian-Hua Han
Jianmei Lei
Yen-Wei Chen
Robust 3D Organ Localization with Dual Learning Architectures and Fusion
12(9)
Xiaoguang Lu
Daguang Xu
David Liu
Cell Segmentation Proposal Network for Microscopy Image Analysis
21(9)
Saad Ullah Akram
Juho Kannala
Lauri Eklund
Janne Heikkila
Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks
30(9)
Erik Smistad
Lasse Løvstakken
Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features
39(9)
Khosro Bahrami
Feng Shi
Islem Rekik
Dinggang Shen
Fast Predictive Image Registration
48(10)
Xiao Yang
Roland Kwitt
Marc Niethammer
Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks
58(10)
Ariel Birenbaum
Hayit Greenspan
Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks
68(9)
Daniel E. Worrall
Clare M. Wilson
Gabriel J. Brostow
Fully Convolutional Network for Liver Segmentation and Lesions Detection
77(9)
Avi Ben-Cohen
Idit Diamant
Eyal Klang
Michal Amitai
Hayit Greenspan
Deep Learning of Brain Lesion Patterns for Predicting Future Disease Activity in Patients with Early Symptoms of Multiple Sclerosis
86(9)
Youngjin Yoo
Lisa W. Tang
Tom Brosch
David K.B. Li
Luanne Metz
Anthony Traboulsee
Roger Tam
De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networks
95(16)
Ariel Benou
Ronel Veksler
Alon Friedman
Tammy Riklin Raviv
Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majority Voting
111(10)
Xiangrong Zhou
Takaaki Ito
Ryosuke Takayama
Song Wang
Takeshi Hara
Hiroshi Fujita
Medical Image Description Using Multi-task-loss CNN
121(9)
Pavel Kisilev
Eli Sason
Ella Barkan
Sharbell Hashoul
Fully Automating Graf's Method for DDH Diagnosis Using Deep Convolutional Neural Networks
130(12)
David Golan
Yoni Donner
Chris Mansi
Jacob Jaremko
Manoj Ramachandran
Multi-dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data
142(10)
Simon Andermatt
Simon Pezold
Philippe Cattin
Learning Thermal Process Representations for Intraoperative Analysis of Cortical Perfusion During Ischemic Strokes
152(9)
Nico Hoffmann
Edmund Koch
Gerald Steiner
Uwe Petersohn
Matthias Kirsch
Automatic Slice Identification in 3D Medical Images with a ConvNet Regressor
161(9)
Bob D. de Vos
Max A. Viergever
Pim A. de Jong
Ivana Isgum
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks
170(9)
Dong Nie
Xiaohuan Cao
Yaozong Gao
Li Wang
Dinggang Shen
The Importance of Skip Connections in Biomedical Image Segmentation
179(9)
Michal Drozdzal
Eugene Vorontsov
Gabriel Chartrand
Samuel Kadoury
Chris Pal
Understanding the Mechanisms of Deep Transfer Learning for Medical Images
188(9)
Hariharan Ravishankar
Prasad Sudhakar
Rahul Venkataramani
Sheshadri Thiruvenkadam
Pavan Annangi
Narayanan Babu
Vivek Vaidya
A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography
197(12)
Ayelet Akselrod-Ballin
Leonid Karlinsky
Sharon Alpert
Sharbell Hasoul
Rami Ben-Ari
Ella Barkan
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
Early Experiences with Crowdsourcing Airway Annotations in Chest CT
209(10)
Veronika Cheplygina
Adria Perez-Rovira
Wieying Kuo
Harm A.W.M. Tiddens
Marleen de Bruijne
Hierarchical Feature Extraction for Nuclear Morphometry-Based Cancer Diagnosis
219(9)
Chi Liu
Yue Huang
Ligong Han
John A. Ozolek
Gustavo K. Rohde
Using Crowdsourcing for Multi-label Biomedical Compound Figure Annotation
228(10)
Alba Garcia Seco de Herrera
Roger Schaer
Sameer Antani
Henning Muller
Towards the Semantic Enrichment of Free-Text Annotation of Image Quality Assessment for UK Biobank Cardiac Cine MRI Scans
238(11)
Valentina Carapella
Ernesto Jimenez-Ruiz
Elena Lukaschuk
Nay Aung
Kenneth Fung
Jose Paiva
Mihir Sanghvi
Stefan Neubauer
Steffen Petersen
Ian Horrocks
Stefan Piechnik
Focused Proofreading to Reconstruct Neural Connectomes from EM Images at Scale
249(10)
Stephen M. Plaza
Hands-Free Segmentation of Medical Volumes via Binary Inputs
259(10)
Florian Dubost
Loic Peter
Christian Rupprecht
Benjamin Gutierrez Becker
Nassir Navab
Playsourcing: A Novel Concept for Knowledge Creation in Biomedical Research
269
Shadi Albarqouni
Stefan Matl
Maximilian Baust
Nassir Navab
Stefanie Demirci
Erratum to: Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks
1(278)
Daniel E. Worrall
Clare M. Wilson
Gabriel J. Brostow
Author Index 279